大地震時のエレベーターの運転停止と閉じ込めリスクに関する検討

名古屋大学大学院 環境学研究科 都市環境学専攻

1. 序論

建築物の縦の移動手段として重要性を持つエレベーター の将来起こり得る大規模地震時の安全性及び機能性の確 保,そして早期復旧への対策が重要である.表1に示す南 海トラフ地震¹¹及び首都直下型地震²¹の被害予想では,近 年発生した大阪府北部地震(以下,大阪府北部地震)によ る 346 台の閉じ込め被害³¹に対し非常に大きな値となって いる.地震時においてはエレベーターの管制運転により乗 客の安全や被害の拡大を防ぐ措置がとられているが,大規 模地震災害において,都市域の多数のエレベーターが同時 に機能を損なうと高層建物の縦の動線の機能が著しく損 なわれ多くの人の生活に影響が及ぶことが考えられる.揺 れを感知した際にエレベーターを停止させ安全を確保す ることに加え早期復旧対策をとる防災としての認識が重 要だと考えられる.

表1 大規模地震時のエレベ	ミーター被害予想 1	.)2)
---------------	------------	------

		首都i	直下型地震	被害予想	エレハ				
		事務所			住宅		合計		
	8時	12時	18時	8時	12時	18時	8時	12時	18時
	約4,700	約17,300	約9,700	約2,100	約100	約1,400	約6,800	約17,400	約11,100
		南海	トラフ地震	被害予想	エレハ	ベーター閉じ	じ込め者数	(人)	
		事務所			住宅			合計	
	8時	12時	18時	8時	12時	18時	8時	12時	18時
基本ケース	約 6,800	約 19,600	約 8,900	約 2,300	約 200	約 1,900	約 9,100	約 19,800	約 10,800
陸側ケース	約 7,500	約 22,300	約 9,900	約 2,600	約 200	約 2,100	約 10,100	約 22,500	約 12,000

2. 現状のエレベーターの仕様とエレベーター数

表2に現状のエレベーターの保守台数を示す⁴⁾. 全国の エレベーターの2018年度保守台数は総数が757,788台で 荷物用,自動車用,ホームエレベーターを除いた台数は, 617,372台であった. そのうち約23%が東京に存在してい る.乗用(荷物用,自動車用,ホームエレベーターを除い た)についての地震時管制運転の有無の台数は,総台数で の保守台数と地震時管制運転の比を用いて概算し.表3の 数値は,国土交通省によると現行基準適合が約3割,既存 不適格(地震時管制運転装置無を除く)が約4割であるの で,これをもとに概算した.年間に新規設置,リニューア ルされるものが約22,000台で保守台数の約4%であるの で現状の台数では現行基準適合の増加には時間がかかる と考えられる.

> 表3 地震時管制運転有 の仕様別台数(台)⁴⁾

> > 乗用

地震時管制運転有 現行基準適合既存不適格

約200,000約266,000

表2現状の保守台数(台)4)									
総台	台数		乗用台数						
2018年度 保守台数	地震時管 制運転有	2018年度 保守台数	地震時管 制運転有	地震時管 制運転無					
757,788	573,004	617,372	約467,000	約150,000					

3. エレベーターの地震時の挙動

3.1 地震時管制運転と運転休止,閉じ込めについて

地震時管制運転装置の設置されているエレベーターが地 震動を検知した時,図1のように運転を停止させる.その 際の基準となる加速度は表4³となっている.低加速度の 基準のみを検知した場合,自動復旧機能があるものは保守 会社による点検行わず自動で点検をし,異常がない場合運 転を再開する.自動復旧機能がないものは保守会社による 博士前期課程2年 飛田研究室 杉浦 崚介 点検を行うまで運転を再開しない.高加速度の基準を検知 した場合,運転停止又は閉じ込めが発生する.高加速度の 基準は運行限界耐力評価の値である.この値を超えた場 合,以後の運転に支障をきたす恐れがあるので,運転を停 止し自動復旧機能が備わっていても,保守会社による点検 が行われるまで運転を再開しないこととされている.着床 前に高加速度を検知した場合は閉じ込めとなる.また,加 速度センサーの閾値に達しない場合でも,エレベーターロ ープ振幅を感知しエレベーターを停止させる挙動をとる.

図1 地震時管制運転のフロー図 表4 地震時管制運転の基準となる加速度⁵(単位:*cm/s*²)

確施宣々	神振言さ		S波						
地12月1日 C		r _{itx}	特低	低	高				
(0 + -5	2009 年 以前	-	80(頂部設置) 30(底部設置)	150(頂部設置) 60(底部設置)	200(頂部設置) 100(底部設置)				
60 <i>m</i> x C				200(頂部設置) 80(底部設置)	300(頂部設置) 120(底部設置)				
60 m 超え 120 mま で	2010年 以降	2.5~10	40(60 m~90 m) 20(90 m~120 m)(頂部設置)	100, 120(頂部設置)	120, 150 (頂部設置)				
120 m 超え	- 超え		長尺物揺振れ感知器 を適用	40, 60, 80, 100 (頂部設置)	60, 80, 100, 120 (頂部設置)				

4 地震に因るエレベーターの運転休止と閉じ込め台数

大阪府北部地震では,近畿地方を中心に2府9県で 63,338台の運転停止と2府3県で346台の閉じ込めが発 生した³⁾.これらの都道府県ごとの発生台数を表5,表6³⁾ に,閉じ込めの発生原因を表7³⁾に示す.原因の多くが乗 場戸スイッチ又はかご戸スイッチの一時的な開路及び大 きな加速度の検知である.前者は戸開走行保護装置の誤作 動によるものとされていて,後者は図1のS波(高加速 度)の検知にあたる.閉じ込めが起こったエレベーターの うち現行基準適合の割合が多かったことから,震源からの 距離が短いことでP波検知からS波検知までの時間が十 分に確保できなかったと考えられる.

2009年の建築基準法施行令の改正の切っ掛けとなった 千葉県北西部地震(以下,千葉県北西部地震)によるエレ ベーターの被害を表8に示す^{の7)}.また,2021年に発生し た千葉県北西部地震についての被害内容も表8に示す.被 害や観測された加速度を比較すると,同様の加速度,周波 数成分の地震で閉じ込め台数は2021年に発生した地震の 方が少ない.しかし,停止台数は保守台数と同様に増加し ていることや,発生時間が夜遅くであり,首都直下型地震 に関するエレベーター被害の想定にあるように時間帯に よる閉じ込めの可能性への影響は大きいこと等を考える と、被害が大きく減少してはいないと考えられる.

東北地方太平洋沖地震では閉じ込めが 210 台と比較的 台数は少ないが, 8,921 台のエレベーターで故障が発生し た.故障の原因の詳細を表 9⁸⁰に示す.このうち,ロープ類に よるエレベーターの故障は 2,125 台報告されており,故障 台数全体の 24 %に上る.このようなエレベーターロープ に関する被害について, 2004 年に発生した新潟県中越地震 では震源から離れた東京都でエレベーターのロープが振 動し、ロープの損傷や非常停止が発生している ⁹.

表 5	運転停-	止免生	台级"		表 /	閉じ込め発生原因	I ^{J)}
	保守台数 (荷物,自動車, ホーム除く)	運転停止 台数	割合		乗場かご戸ス	景戸スイッチ又は イッチの一時的な開路	211件
福井県	2,713	15	0.55%		N C)	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
岐阜県	5,809	97	1.67%		大き	な加速度の検知	195件
愛知県	40,843	152	0.37%			 信 雷	54件
三重県	5,335	146	2.74%			行电	0111
滋賀県	4,876	1,388	28.47%		調速機の	過速スイッチの作動	17件
京都府	14,623	7,440	50.88%		乗場	戸スイッチ又は	
大阪府	64,633	37,831	58.53%		かご	戸スイッチの開路	12件
兵庫県	31,198	13,824	44.31%		(一用	痔的なものを除く)	
奈良県	4,800	2,434	50.71%		非常	止め装置の作動	7件
和歌山県	3,361	7	0.21%		20	の他の安全装置	2件:
香川県	3,750	4	0.11%		- ر ب	の他の女主表直	411
合計	181,941	63,338	34.81%		乗場戸の	施錠装置の係合外れ	1件
		#	< BB	10.71	1 76 1. /	半4 3)	

	衣 6 闭し込め発生 口級 5									
		現	行基準適合		畏	花存不適格		地震時	地震時管制運転なし	
		発生台数	保守台数	割合	発生台数	保守台数	割合	発生台数	保守台数	割合
	滋賀県	0	1,600	0.00%	1	2,100	0.05%	0	1,200	0.00%
	京都府	13	4,800	0.27%	11	6,300	0.17%	0	3,500	0.00%
	大阪府	121	21,300	0.57%	144	27,800	0.52%	13	15,500	0.08%
	兵庫県	4	10,300	0.04%	33	13,400	0.25%	1	7,500	0.01%
	奈良県	1	1,600	0.06%	4	2,100	0.19%	0	1,200	0.00%
	合計	139	39,600	0.35%	193	51,700	0.37%	14	28,900	0.05%
		表 8	運転	停止	及び閉	じ込め)発生	台数 6)7)	
		2005年	に発生	したヨ	F葉県北	西部を	震源。	とする地	也震	
狋	守台数		227,00	0台	(東京・	千葉・	埼玉·	・神奈川)	
Ē	転停止		64,00	0台	(東京・	千葉・	埼玉・	・神奈川)	
ţ	しじ込め		7	8台	(東京・	千葉・	埼玉·	・神奈川)	

	2021年に発生した	千葉県北西部を震源とする地震
保守台数	292,652台	(東京・千葉・埼玉・神奈川)
運転停止	75,738台	(首都圏を中心)
閉じ込め	28台	(東京・千葉・埼玉・神奈川)

5. 地震動によるエレベーターの停止及び閉じ込めのリス ク評価

5.1. 検討する建物モデル

建物応答をもとに地震動によるエレベーターの停止や 閉じ込めについて検討するための建物モデル①~④を表9 ~表12に示す.層重量は一定とし, RC 造では1000 kg/m², S 造では750 kg/m²の基準階面積 600 m² 階高3mの等価 せん断モデルとする.各階の層せん断力について,式(1), (2)から求め,層剛性を決定する.

 $Q_i = Z \cdot Rt \cdot Ai \cdot C_0 \cdot \Sigma W_j \quad (1)$

 $Ai = 1 + \left(\frac{1}{\sqrt{a_i}} - a_i\right) 2T/(1 + 3T) \ a_i = \frac{\Sigma W_j}{W} \ (2)$

ここで、Z:地域係数(ここではZ = 1とする) R_t :地盤と 建築物の振動特性係数、Ai:高さ方向の分布係数、 ΣW_j : i層 を含むi層より上の重量、W:総重量、 C_0 :標準層せん断力係 数(ここでは1次設計として $C_0 = 0.2$)とする.

	表 9	建物モデル	1 I	RC 造 10 階	5		
建物高さ		30 m	-				
構造		RC					
概算1次固有周	期	0.6 s	モー	ド	1次	2次	3次
減衰定数		3.0%	固有	振動数(Hz)	1.59	4.04	6.44
変形角	Rdi	1/300	固有	周期(s)	0.63	0.25	0.16
特性係数	Rt	0.95					
せん断力係数	C0	0.2	_				
	表 10	建物モディ	V2)	S造10階	<u>k</u>		
建物高さ		30 m	-				
構造		S					
概算1次固有周	期	0.9 s	モー	ド	1次	2次	3次
減衰定数		2.0%	固有	振動数(Hz)	1.12	2.86	4.55
変形角	Rdi	1/200	固有	周期(s)	0.89	0.35	0.22
特性係数	Rt	0.71					
せん断力係数	C0	0.2	_				
	表 11	建物モデル	3	RC 造 20 阳	比		
建物高さ		60 m					
構造		RC					
概算1次固有周	期	1.2 s	モー	ĸ	1次	2次	3次
減衰定数		2.5%	固有	振動数(Hz)	0.88	2.27	3.65
変形角	Rdi	1/300	固有	周期(s)	1.14	0.44	0.27
特性係数	Rt	0.53					
せん断力係数	C0	0.2					
	表 12	建物モデノ	rV4)	S 造 20 階	E a		
建物高さ		60 m					
構造		S	モー	・ド	1次	2次	3次
概算1次固有周	期	1.8 s	固有	振動数(Hz)	0.59	1.53	2.47
減衰定数		1.5%	固有	周期(s)	1.70	0.65	0.41
変形角	Rdi	1/200					
特性係数	Rt	0.36					

5.2. エレベーターロープの振幅による評価

C0

0.2

せん断力係数

地震発生時には加速度の検知による運転停止だけでな く、かごが揺れによる損傷や運転停止、エレベーターロー プが原因の運転停止や閉じ込めが発生する.したがって地 震時管制運転などによる災害発生時の安全性の確保のみ ならず、被害の程度を把握し効率的な復旧計画を立て災害 後の復旧作業の時間短縮や地震時の損傷軽減のためにも 建物のロープの挙動を把握する必要性があると考えられ る. 想定外の被害が発生した場合、復旧作業の遅れや救助 要請の過多などが想定されるため様々な被害の検討が必 要と考えられる. ここでは、大地震時の損傷の可能性を考 えてエレベーターロープの挙動について考える.

5.3. エレベーターロープの振幅計算のフロー

ロープ振幅の計算にあたり,図2のようなモデルで計算 する.入力地震動を決定し,応答解析を行いモデル化した 建物の各層の相対応答変位を求める.ロープへの入力とす る為に高さは1mごとの応答に,時間刻みはロープ応答計 算を収束させるために 0.0025 秒刻みに線形補間する.そし て,地震動の加速度を直接積分した地表面変位を用い,各 応答を絶対変位として入力する.ロープのモデル化は,エ レベーターのメインロープは通常複数のワイヤーロープ によって構成されるが,地震動と構造物,そしてメインロ ープの応答の関連性について重点を置くためロープを一 本のモデルとして扱い,せん断方向のみに変化する弦と する.ロープの運動方程式を式(3)で表す¹⁰⁾.

 $\rho A \left(\frac{\partial}{\partial t} - V_0 \frac{\partial}{\partial y}\right)^2 u(y,t) - \frac{\partial}{\partial y} \left(T(y) \frac{\partial u(y,t)}{\partial y}\right) + C \left(\frac{\partial}{\partial t}\right) u(y,t) = 0 \quad (3)$ $T(y) = (M_C + \rho A y)g \quad C = \frac{2\pi \zeta}{t_0} \sqrt{\rho A T}$

ここで, *ρA*: ロープの単位長さ当たりの質量 (1.7*kg/m*), *u*(*y*,*t*): ロープの水平変位(地表面を*y* = 0とする), *T*(*y*): 張力、C:ロープの長さ当たりの減衰定数、M_c:かごの質量 (3.0×10³ kg)、g:重力加速度、ζ:ロープの減衰比 (0.008)である.ロープへの入力変位は建物の応答変位を、 かごを介して入力する.かごの運動方程式及び差分方程式 を以下に示す.

$$\begin{split} M_{c}\ddot{u} + 2k(u-x) + 2c(\dot{u}-\dot{x}) &= 0 \quad (4) \\ \dot{u}_{n+1} &= \frac{\left[-2k\left[u_{n}+\dot{u}_{n}\Delta t + \left(\frac{1}{2}-\beta\right)\ddot{u}_{n}\Delta t^{2}\right] - c\left(\dot{u}_{n}+\frac{1}{2}\dot{u}_{n}\Delta t\right) + 2kx_{n+1} + 2c\dot{x}_{n+1}\right]}{M_{n} + \frac{1}{2}\Delta t + 2kBM^{2}} \quad (5) \end{split}$$

これらの入力変位を用いて離散化したロープモデルの 変位を求める. ロープの差分方程式を式(6)に示す¹⁰⁾. $u_{ij+1} = \left\{ 2\left(1 - \frac{\Delta t^2}{\Delta y^2} \frac{T}{\rho A}\right) u_{ij} + \frac{\Delta t^2}{\Delta y^2} \left(\frac{T}{\rho A} - \frac{\Delta y}{2}g\right) u_{i+1j} + \frac{\Delta t^2}{\Delta y^2} \left(\frac{T}{\rho A} + \frac{\Delta y}{2}g\right) u_{i-1j} - \left(1 - \frac{c}{\rho A} \frac{\Delta t}{2}\right) u_{ij-1} \right\}$ (6) $a\Delta t \ll \Delta y \qquad a = \sqrt{\frac{T}{\rho A}}$ (7)

式(7)は差分方程式が収束するために、 $\Delta t \ge \Delta y$ の間には CFL条件から式 5.3 の関係を与えてある.ここで、aはロー プを伝わる横波の伝播速度であり、本検討では、 $\Delta y =$ 1 $m,\Delta t = 0.0025$ 秒とした.

5.4 ロープ振幅の計算

大阪府北部地震,2005年と2021年の千葉県北西部地震を 入力地震動とし、観測された加速度波形のうち、計算には 20 秒間を切り取った加速度記録を使用する. 図 3~図5 に 入力加速度, 地表面変位, フーリエスペクトルを示す. ま た、図 6~図9には建物とロープの共振についてのグラフ を示す.各地震動を入力とし、各モデルでロープ長さが最 長から5mまで1mごとにロープの応答計算を行い、各ロ ープ長さの最大振幅を求めた結果を図 10~図 21 に示す. これらの結果をもとに各ケースで振幅がピークとなった 時のロープ長さ、かご位置、最大振幅位置、振幅をまとめ たものを表 13 に示す. 全体として, 建物モデルごとにロ ープ振幅が大きくなるロープ長さ,最大振幅位置はおおよ そ同じで入力地震動により振幅の大きさが変化している. 図 22 に示す大阪府北部地震をモデル①に入力したロープ 長さが 15 m の時は、ロープは 1 次モード、約 4.4 Hz で振 動しており、図23に示す大阪府北部地震をモデル④に入 力したロープ長さが 30 m の時は、ロープは 2 次モード、 約 4.5 Hz で振動している. ロープ長さが 60 m 付近になる と、ロープの振動数は1.2.3 次モードが複合したものとな っている場合がある. ロープ長さが15mで1次モード. 約 4.4 Hz で振動する場合は、図 24 に示す建物モード形状 から、建物高さが 30mの時は建物 2次モード、建物高さ が60mの時は建物3次モードが影響していると考えられ る. ロープ長さが 30 m で 2 次モード,約 4.5 Hz で振動す る場合は、建物高さが 30 m の時は建物 1 次モード、建物

高さが60mの時は建物2次モードが影響していると考え られる. 全体として、約4.4 Hz でロープが振動するロープ 長さで振幅のピークを迎えているのは、かごの固有振動数 が 4.4 Hz であるので、振幅が大きくなりやすいロープ長さ が、周波数成分の異なる入力地震動でも同じになるのでは ないかと考える. 建物モデル, ロープ長さが同様でも入力 地震動によって最大振幅が異なることから、かごの振動数 によってある程度決められたロープ長さに対し、入力地震 動の周波数成分や,建物の固有振動数が一致することによ って振幅が大きくなるのではないかと考える. 建物モデル ③で 2005 年と 2001 年の千葉県北西部地震を入力とした 場合に 2021 年の方が約 60 m のロープ長さに対し振幅が 大きくなっている. 2005 年と 2021 年の千葉県北西部地震 のフーリエスペクトルを比較すると、2021年の方が4~5 Hzの振動数成分が少し大きい.また、大阪府北部地震と千 葉県北西部地震では、大阪府北部地震の方が 4~5 Hz の成 分が大きく、大阪府北部地震でのロープ振幅が千葉県北西 部地震に比べ大きくなったことから、入力地震動の影響が 大きいと考えられる.

6. 結論

本研究では、建物やエレベーター数、地震時管制運転、 地震に因るエレベーター被害事例についてまとめ、加速度 による検討とロープ振幅の計算を行った.千葉県北西部地 震の加速度に関する比較では、2005年から 2021年にかけ て被害は大きく減少しておらず,災害時の都市部の脆弱性 の問題はあまり進展していないと考える. ロープ振幅の計 算では、想定した建物モデルに対し3つの入力地震動を用 い、1 m ごとの振幅を求めピークとなるロープ長さや条件 の考察を行った. 複数のケースを検討した結果, 建物とロ ープの共振よりも今回のケースでは、入力地震動の周波数 成分とかごの共振の影響が大きいのではないかと考えら れる. この点に関して、かごの固有振動数を変化させるこ とや,異なる周波数成分の入力地震動のレベルを合わせる などして,より詳細な比較検討をする必要があると考えら れる. 大規模改修が比較的難しいエレベーターに対し、あ らかじめ振幅が大きくならないようエレベーターロープ のパラメータを決定するために振幅が大きくなる組み合 わせの特定や、加速度の検知に関してセンサーの開発と建 物応答の相互理解が重要だと考えられるため, エレベータ ーメーカーと建設業の双方が情報を共有し地震動による 影響を考慮した装置の開発及び建物の設計が求められる.

参考文献

- 中央防災会議:南海トラフ巨大地震の被害想定について(第二次報告)~ 施設等の 被害~,2013
- 2) 中央防災会議:首都直下地震の被害想定と対策について(最終報告) ~ 人的・物的 被害(定量的な被害) ~,2013
- 3)国土交通省住宅局建築指導課:大阪府北部を震源とする地震に因るエレベーターの 被害状況の分析と対策の実施状況について、2019年6月.
- 4) 一般社団法人日本エレベーター協会:2018年度昇降機設置台数等調査結果報告
- 5) 谷口元彦:エレベータ設備の災害対策 建築設備技術者協会会誌 2010 年 10 月号
- 6) 国土交通省:社会資本整備審議会建築分科会:建築物等事故・災害対策部会:エレベ ーターの地震防災対策の推進について、2008年4月

7) 国土交通省:社会資本整備審議会建築分科会:建築物等事故・災害対策部会:千葉県北 西部地震におけるエレベーターの被害状況等について,2021年11月
8) 宮田 毅:東北地方太平洋沖地震などによるエレベーターの被害概要,2012
9) 気象庁:長周期地震動に関する情報の作成・提供の目的と方向性(案),2011.11
10) 豊嶋順彦:高速エレベータのワイヤ・ローブ系の振動特性(差分法による数値解

Ist ● 2nd ▲ 3rd + 4th = 5th ● 6th = 7th → 8th ● 9th ● 10th ● 11th ● 12th ▲ 13th ● 14th = 15th ● 16th

図 24 建物モード形状

- 17th

🕨 18th 🔸 19th