地震観測記録に基づく多様な建物の立体振動特性に関する研究

名古屋大学大学院 環境学研究科 都市環境学専攻

博士前期課程2年 飛田研究室 国松 行

3. 長期観測記録を用いた S 造 10 階建建物の振動特性の 分析

3.1 対象建物概要

対象建物は名古屋大学東山キャンパス内に立地する IB 電子情報館北館である.基準階平面図,立面図,地震観測 点配置図を図 2,図 3 にそれぞれ示す.対象建物は上部構 造が S 造である.また基礎形式は杭基礎であり,比較的杭 径の大きい杭を有している.そのため,上部構造の剛性よ りも基礎構造の剛性が大きく動的相互作用が小さい建物 と考えられる.また,平面形状は整形な形をしているため, 偏心の小さい建物と推定される.

観測点は1階で3点,屋上階で2点の観測を行っている. 一階の中央観測点では長辺・短辺・上下方向の3成分,西 側観測点では短辺方向,南側観測点では上下方向の観測を 行っている.西側観測点では短辺方向のねじれ振動の抽出, 南側観測点ではロッキング動の抽出を行うことが可能で ある.屋上階の中央観測点では長辺・短辺・上下方向の3 成分,西側観測点では短辺方向成分の観測を行っており, 主要構造の基本的な振動性状とねじれ振動の分析を行う ことができる観測体制となっている.

3.2 地震記録の概要

対象建物では竣工直後の 2001 年から現在まで継続的な 観測をおこなっており, 2001 年~2018 年 6 月までに全 182 の地震記録が得られている.図4,表1 に観測地震の震央 分布,計測年と地表震度,1 階計測震度の関係を示す.本研 究で用いる地震は 2012 年からのものとし,それ以前の地 震については既往の研究¹⁰の結果を引用しながら分析を行 う.2012 年以降で観測された地震は最大震度が2,応答加 速度で 30gal 程度の小地震である.

1. 序論

建物における強震観測は 1996 年の兵庫県南部地震を契 機に増加していき,現在では少なくとも国内で 500 棟以上 の建物において,観測が行われている.これらの観測記録 の蓄積や,常時微動計測,強制振動実験などにより,動的 相互作用や立体振動,経年変化など,建物の複雑な挙動が 明らかになった.また,少子高齢化や人口減少といった社 会現象を起因として,建物を長期間使うという価値観が広 まり,地震観測のモニタリングとしての役割が重要になっ てきている.以上のような背景から,本研究では建物の振 動特性の変化と立体振動特性について分析を行い,これら の要因が応答に与える影響を考察することを目的とする.

2. 振動特性の分析手法

建物が立体的に振動している際,建物の応答は水平2方 向の入力を受けて振動していることとなる.そこで本論で は、固有振動数や減衰定数といった建物振動特性を推定す る際には、水平2方向の入力を考慮して推定を行う.本論 で用いる振動システムのモデルを図1に示す.同定方向を xとし、その直交方向をyとして、観測された応答Zxを以 下のように定義する.

$$Z_{x}(\omega) = \left(\sum_{s=1}^{N} \frac{\omega^{2} \beta_{sx} u_{psx}}{\omega_{s}^{2} - \omega^{2} + 2h_{s} \omega_{s} \omega i} + 1\right) A_{x}(\omega) + \left(\sum_{s=1}^{N} \frac{\omega^{2} \beta_{sy} u_{psy}}{\omega_{s}^{2} - \omega^{2} + 2h_{s} \omega_{s} \omega i}\right) A_{y}(\omega)$$

推定パラメータはシステムの固有円振動数 ω s, 減衰定数hs, 同定方向の刺激係数 β_{supsx} ,同定方向と直交する方向の刺 激係数を β_{syupsy} である. β_{syupsy} によって直交方向の入力を 評価することができる.また,建物によっては直交方向 入力の影響が同定方向の固有振動数とは異なる振動数に 現れる場合がある.その際には以下のように Z_x を定義し, これを用いて推定を行う.

$$Z_x(\omega) = \left(\sum_{s=1}^N \frac{\omega^2 \beta_{sx} u_{psx}}{\omega_{sx}^2 - \omega^2 + 2h_{sx} \omega_{sx} \omega i} + 1\right) A_x(\omega) + \left(\sum_{s=1}^N \frac{\omega^2 \beta_{sy} u_{psy}}{\omega_{sy}^2 - \omega^2 + 2h_{sy} \omega_{sy} \omega i}\right) A_y(\omega)$$

推定パラメータとしてy方向入力に対する応答の固有円振 動数 ω_{sy} と減衰定数 h_{sy} が加わる. これらの応答のスペク トルと実測のスペクトルの差の2乗が最小となるパラメー タを探していく.

3.3 代表的な地震観測記録の分析

性格の異なる 3 地震について,加速度波形,加速度フー リエスペクトル,伝達関数を図 5~7 に示す.図 5 は 2012 年 5 月 5 日の愛知県西部を震源とする M4.3,最大震度 3 の地 震(地震 1),図 6 は 2014 年 11 月 22 日の長野県北部を震源 とする M6.7,最大震度 5 弱の地震(地震 2),図 7 は 2015 年 5 月 30 日の小笠原諸島西方沖を震源とする M8.1,最大震 度 5 強の地震(地震 3)である.対象建物 1 階の震度はいず れも 2 となっている.

加速度波形を見ると、愛知県西部の地震は継続時間が短く 短周期が卓越しているが、長野県北部、小笠原諸島西方沖 の地震は遠方で規模が大きい地震のため、継続時間が長く、 長周期成分が卓越している.建物応答については、最大加 速度応答の増幅倍率はそれぞれ1.2倍、7.2倍、6.5倍となる. 伝達関数はいずれも固有振動数で明確なピークとなり、水 平2方向とねじれのピークが近接している.さらにNS(短 辺)のスペクトルでは、特に地震1において EW(長辺) の固有振動数でもピークが現れており、2方向の連成がみ られる.一方地震2では、EWの伝達関数において NSのピ ーク付近の振動数でもピークが生じている.さらに建物西 側の観測点の伝達関数から、いずれの地震でも1~1.1Hz付 近にピークがあり、ねじれ振動のピークと考えられる.

3.4 固有振動数・減衰定数の経年変化

図 8 に固有振動数の推定結果を観測日との関係で示す. ここでは1自由度モデルのフィッティングにより各方向の 固有振動数と減衰定数を検討する. 前節で述べたように, 水平2方向とねじれが近接しているため、フィッティング を行う周波数範囲を各ピークが重ならない範囲で設定し ている.また, 既往の推定結果も併せてプロットし分析を 行う.2001 年から現在まで、特に大きな地震はなく、長期 の変化に明確な傾向はみられない.しかし、竣工から3年 間に着目すると固有振動数が 10%程度低下していること が分かる.一般にS造の経年による変化は小さく,剛性の 変化に起因するとは考えられない. また, 重量変化にして 約1750tの増加となり、重量の変化としても非常に大きい. そのため、この3年間の変化に対しては今後も検討の余地 がある.一方,減衰定数は竣工から3年間は推定値のばら つきが小さく、それ以降はばらつきが大きいが、全体とし て明確な傾向は読み取れなかった.

3.5 固有振動数・減衰定数の振幅依存性

図9,10に建物の最大全体変形角と固有振動数, 減衰定数 の関係を示す.最大全体変形角は,屋上と1階の記録の2 階積分の差を高さで除して求めている.地震記録によって 積分が安定しない場合は除いている.最大全体変形角が大 きくなると固有振動数が下がり,減衰定数が大きくなる傾 向が明確に見られる.

中低層建物の立体振動特性の評価 4. 4.1 S造 10 階建建物の立体振動特性 (1)波形とスペクトルの特徴

対象建物は3 で分析を行ったS 造 10 階建建物である. この建物は水平2方向の固有振動数が近接しており、なお かつ減衰定数が比較的小さい. このような建物では水平 2 方向の振動が連成する場合がある.図 11 に対象建物で観 測された 2018 年大阪北部の地震の加速度波形を示す.加 速度波形は全体としてうなるような波形になっている.

図 12 にいくつかの地震の屋上/1F の伝達関数の振幅を 示す.赤色の逆三角形が短辺方向のピーク,青色の逆三角 形が長辺方向のピーク位置を示している.図 12 (a) では 長辺方向の伝達関数において赤色の逆三角形で示した 0.95Hz 付近のピークに加えて 0.86Hz 付近にもピークがあ る. このピークの位置は短辺方向の 0.86Hz 付近のピーク の位置と一致している.このことから、長辺方向の振動が 短辺方向の影響を受けていると考えられる. これと同様の 伝達関数の形が図 12(b) にも確認できる. 一方図 12(c) では、短辺方向の伝達関数において青色の逆三角形で示し た 0.88Hz 付近のピークに加えて 0.98Hz 付近にもピークが ある. このピークの位置は長辺方向の 0.98Hz 付近のピー クの位置と一致している.これと同様の伝達関数の形が図 12 (d) にも確認することができる. また (a) ~ (d) の西 側観測点の短辺方向の伝達関数においてのみ, 1Hz 強の位 置にピークが現れており、これはねじれモードによるピー クであると考えられる.特に(c)では、短辺方向の伝達関 数に,1Hz 強の位置にピークが現れており、ねじれ振動の 影響を受けている可能性がある.

(2)モーダルパラメータの推定

大阪北部地震の地震観測記録に対し,1方向入力1応答 系、2 方向入力 1 応答系を想定したモデルで伝達関数の推 定を行った.後者については2で提案した二つの伝達関数 で推定を行った.これらの結果を表 2,3 に示す.刺激係数 x はシステムの同定方向, 刺激係数 y は同定方向と直交する 方向の刺激係数である.表2と3を比較すると,2次モード の減衰定数の推定値が大きく変化している.一方で1次モ ードの減衰定数の推定値に変化はない.また、刺激係数 y は一次よりも二次の方が大きくなっており, 直交方向の入 力の影響は二次モードの方が受けやすいことが分かる.次 に連成モードを考慮した推定結果を表 4.5 及び図 13,14 に 示す.このモデルにおける誤差は比較的小さく,精度の高 いフィッティングができていると考えられる. 連成モード の刺激係数は長辺方向で-0.319、短辺方向で 0.255 と比較 的大きく評価されており,ある程度直交方向入力の影響を 受けていることが分かる.このことから、対象建物の振動 特性の推定や応答予測においては,水平2方向の連成を考 慮したモデルを用いることが適当であると考えられる.

2011 年~2018 年の地震記録から得られた, 連成を考慮し たモデルにおける刺激係数vと最大全体変形角の関係を図 15 に示す. 刺激係数 x は最大全体変形角によらず 1~1.5 程 度の値を示しているが、刺激係数 y は最大全体変形角が大 きくなるにつれて小さくなっていく傾向がみられる. 図 16の長辺・短辺方向の固有振動数と最大全体変形角の関係 に着目すると、最大全体変形角が大きくなるにつれて、両 方向の固有振動数が若干近づく傾向がみられる.この傾向 により、連成の程度を示す刺激係数 y が最大全体変形角と 相関を示す可能性があると考えられる. このような傾向に ついては、さらに多くのデータ・建物での検討が必要であ る.

図 12 各地震の伝達関数の振幅

部所務日

表3 2方向入力1応答系の推定結果

11/1-2	1966-1- 796	THE-L THE-L	
因有新酰数	0.937	2.617	
這麼定款	0:015	0.023	
利激活数×	1.271	-0.483	
刺激乐政y	-0.012	0.126	
パラメータ	1次モード 連成モード		
固有振動数	0.869	0.938	
溪衰定数	0.016	0.012	
刺激係数	1.373	0.255	
旗差	0.101		

図 14 短辺方向の伝達関数

固有振動数

4.2 SRC 造 10 階建建物の立体振動特性

対象建物の平面図, 立面図を観測点配置と共に図 17 に 示す.対象建物の構造形式が SRC 造であり, 増築によって 平面形状がコの字型になったことで東側のウィングの、ね じれ振動の影響が低減されたことが分かっている.²⁾²⁰¹⁶ 年4月1日に発生した三重県南東沖の地震の屋上/1Fの伝 達関数を図18に示す.長辺方向,短辺方向の固有振動数が それぞれ 1.7Hz, 1.9Hz 程度と近接していることが分かる. 次に常時微動計測から得られた RD 波形を図 19 に示す. RD 波形は減衰自由振動することなく、乱れた波形になっ ている.これは水平2方向の間でエネルギーのやり取りが あるためと考えられる.この連成挙動の評価と、連成挙動 が振動特性の推定に与える影響を調べるため、1入力1応 答系による振動特性の推定と、2入力1応答系での推定を 比較し検討する.

推定結果を表 6.7, 図 20.21 に示す. いずれの推定方法に おいても一次固有振動数の推定値に大きな差はないが,減 衰定数は 2 方向入力を考慮することで約 10%程度大きく 推定されている. また, 刺激係数 y は 0.083 となっており, 影響は比較的小さいものの水平2方向の連成が生じている ことが分かる.

4.3 PCaPC 造7 階建建物の立体振動特性

対象建物の建物概要と平面図, 立面図, 観測点配置図を 図 22 に示す.対象建物は PCaPC 造であり,既往の研究 3) から長辺方向、短辺方向の固有振動数がそれぞれ 2.7Hz, 2.3Hz と分かっている. また, ねじれ振動の固有振動数が 2.5Hz 強にあり、長辺方向の並進1次モードと連成するこ とが分かっている. そこで,1入力1応答系の振動特性の推 定と,2入力応答系での推定を比較し、ねじれ成分の評価 を試みる.

推定結果を表 8.9、図 23.24 に示す. 2 入力 1 応答系の刺 激係数 y から、ねじれ振動の影響を 22%程度受けているこ と分かる.一方で、固有振動数や減衰定数の推定値に大き な差はなく、振動特性の推定にはほとんど影響を与えない ことが分かった.

5. まとめ

地震観測記録を用いて、振動特性の長期変化や振幅依存 性の検討を行った.また、立体的な振動特性に着目しねじ れ振動や水平2方向のモード間連成の評価と、振動特性の 推定に与える影響について考察した.

分析対象とした S 造 10 階建建物では、竣工から 3 年間 で大幅に固有振動数が低下することが確認された.しかし、 それ以降で長期的な振動特性の変化は見られなかった.固 有振動数, 減衰定数については明確に振幅依存性があるこ とが確認された.

中低層建物3棟を対象として立体振動特性の分析を行っ た.3棟中2棟の建物において、水平2方向の振動が連成す るような振動が確認された.また,1棟については並進と ねじれが連成するような振動が確認された. いずれの建物 も整った平面形状であるにも関わらず立体的な振動特性 を持っていた. これらの立体振動が固有振動数や減衰定数 といったモーダルパラメータに与える影響は小さいが, S 造10階建建物では連成の影響が比較的大きく、応答予測・ 設計・振動特性推定におけるモデルは水平2方向連成を考 慮したモデルを用いる必要があると考えられる。

参考文献

- 豊部立:地震観測・常時微動計測・加振実験に基づく多様な構造物の振 動特性の把握に関する研究,名古屋大学大学院修士論文,2012
- 2)
- 間田純一、観測記録に基づくSRC造10階連進物の実振動特性と構造解 析による評価に関する研究,名古屋大学大学院修士論文,2001 海野元伸:高密度強震観測及び振動実験に基づく建築物と基礎-地盤系
- の復元力特性評価,名古屋大学大学院修士論文,2011

表8 1方向入力1応答系の推定結果

表9 2方向入力1応答系の推定結果

