埋込み基礎における動的相互作用効果の簡易評価法に関する研究

1. 序論

近年の地震被害では、観測された地震動の強さに比 較して建物の被害が少ない例が報告されている。この 要因として、設計では考慮されていない建物の余力や、 建物と地盤との動的相互作用効果等が挙げられること がある。動的相互作用効果の影響を示す研究も多い。

しかし、動的相互作用効果を取り入れた設計は、原 子力発電施設や大規模構造物等の限られた場合でしか 行われていない。一般の建物の設計でこの効果を取り 入れるためには、簡便な評価手法が必要不可欠である。 そうした中で、2000年に導入された限界耐力計算法 (以降、限耐法と表記)では、入力地震動が工学的基盤 で定義され、地盤増幅が考慮されるとともに、動的相 互作用効果を簡易に評価する方法が提示された。これ によって、一般の建物でも動的相互作用効果を取り入 れた、より実現象に近い耐震設計が可能となったが、 限耐法では簡便性ゆえにインピーダンスを静的値とし て表現しているなど、考慮していない点もある。

また、直接基礎と同様に、杭基礎にも何らかの埋込 みが存在する場合が多い。限界耐力計算法における杭 基礎インピーダンスの評価方法にあるように、杭基礎 はロッキングに対する抵抗力は大きいものの、スウェ イに対する抵抗力はその静的なインピーダンスで地表 面基礎と同程度である。杭基礎で埋込みを考慮するこ とで、側面の抵抗によるインピーダンスの増加が期待 できるが、簡便な手法によってそれを取り入れる取り 組みはまだ少ないのが現状である。

本研究では、埋込み基礎における動的相互作用効果 を簡易に評価する手法の提案を行い、その妥当性を薄 層要素法と有限要素法とを容積法に基づく動的サブス トラクチャー法によって結合した文の解析手法¹⁾によ る精算解と比較する。簡易評価法を提案するに先立ち、 精算解のモデル化が解析精度に及ぼす影響を検討し、 モデル化方法と解析結果に関する知見を得る。また、 精算解による埋込みを有する杭基礎の動的相互作用特 性を把握し、提案手法を埋込みを有する杭基礎へと応 用した結果を検証する。

2. モデル化が解析精度に及ぼす影響

埋込み基礎は、有限要素を用いてモデル化する。本 検討では、基礎の分割による影響を見るために、同じ 大きさの埋込み基礎に対して、水平方向、鉛直方向の 分割数を変更したケースを検討した。その解析ケース 一覧を表1に、要素分割の概念図を図1に示す。共通 の条件として、基礎は $2b \times 2c \times E=24 \times 24 \times 12(E/b_e$ =1.0)で均等に分割し、地盤条件は半無限一様地盤でせ ん断波速度Vs=250m/s、密度 $\rho=1.8t/m^3$ 、ポアソン比 ν 名古屋大学大学院 環境学研究科 都市環境学専攻 博士課程前期課程2年 飛田研究室 鈴木 承慈

=0.45、材料減衰定数h=0.03 である。図2に、水平イン ピーダンスの実部、図3に回転入力を例に基礎の要素 分割の影響を示す。基礎節点数を横軸に、図4(a)に水 平インピーダンス、図4(b)に回転入力の影響を示す。 対象振動数は、0.1Hz、10Hz(a₀=*ab_e/V_s*=3)であり、イ ンピーダンスは地盤剛性Gと底面の面積等価な正方形 基礎の半幅*b_e*を用いて無次元化している。

図2よりインピーダンスは鉛直よりも水平方向の要素分割数の影響が大きい。図4(a)より水平方向の分割数を増すと実部高振動数域のインピーダンスが増加する。鉛直方向の分割数を増すことで、実部は高振動数域のインピーダンスが減少するが、虚部には殆ど影響がない。基礎入力動では、水平入力よりも回転入力の方が影響が大きい。回転入力では、水平方向の分割数を増すことで応答が減少し、鉛直方向の分割数を増すことで応答が増加する傾向が得られた。

3. 埋込み基礎のインピーダンスの簡易評価法の提案 提案手法では、一般建物への適用性を考慮し、基礎一 地盤系の効果をインピーダンス、基礎入力動として表

現する SR モデルを対象とする。基礎は無質量剛体の 矩形基礎、地盤は半無限一様地盤とする。

本研究で提案するインピーダンスの簡易評価法の概 要を述べる。埋込み基礎のインピーダンスは、底面要 素と側面要素に分離し、それらが埋込みの無い地表面 基礎のインピーダンスの和によって表現できると仮定 する。底面要素には用意した地表面基礎のインピーダ ンスをそのまま用い、側面要素にはそれに補正係数を 施して用いる。補正係数として基礎の形状補正係数、

底面要素と側面要素の地盤重複効果補正係数を提案する。補正係数を2種類設定することで、係数の定性的な意味が表現できるものと考える。なお、本手法の評価対象は $a_0 \leq 3.0$ 、 $E/b_e \leq 1.0$ 、基礎底面のアスペクト比 $b/c = \lambda$ で 0.1~10.0 とする。

式(1)~(4)に、インピーダンスの簡易評価式を、図 5 に足し合わせる側面の概念図を示す。

$K_{HH} = {}^{b} \gamma_1 K_{HH}^{b} + 2\alpha_{HH}$	$\left({}^{s1}\gamma_1 K^b_{HH} + {}^{s2}\gamma_3 K^b_{VV}\right)$) (1)
--	--	-------

$$K_{VV} = {}^{b} \gamma_{3} K_{VV}^{b} + 2\alpha_{VV} ({}^{s1} \gamma_{2} + {}^{s2} \gamma_{2}) K_{HH}^{b}$$
(2)

$$K_{RR} = {}^{b} \gamma_{5} K_{RR}^{b} + 2\alpha_{RR} \left\{ \left({}^{s1} \gamma_{1} K_{HH}^{b} + {}^{s2} \gamma_{3} K_{VV}^{b} \right) \times \left(\frac{E}{2} \right)^{2} + {}^{s2} \gamma_{2} K_{HH}^{b} c^{2} \right\}$$
(3)

$$K_{HR} = 2\alpha_{HH} \left({}^{s_1}\gamma_1 K^b_{HH} + {}^{s_2}\gamma_3 K^b_{VV}\right) \frac{E}{2} + 2\alpha_{VV} {}^{s_2}\gamma_2 K^b_{HH} c$$
(4)

ここで、各式左辺のK_{HH}、K_{VV}、K_{RR}、K_{HR}は埋込み 基礎の水平、上下、回転、水平一回転連成インピーダ ンスである。各式右辺のK^b_{HH}、K^b_{VV}、K^b_{RR}は地表面基 礎の水平、上下、回転インピーダンスであり、本手法 では既知であるとしている。加振方向と側面要素の位 置関係により側面要素の作用の仕方が異なることを考 慮するため、加振方向に平行な側面をs1面、直交な側 面をs2面と呼ぶ。また、底面をb面と表記した。

3.1 基礎形状補正係数

杉本²⁾は、基礎の面積やアスペクト比による地表面 基礎の静的インピーダンスが変化する特性を表 2 のよ うに提案している。表 2 中のηは面積比である。本研 究では、これを動的な領域にまで拡張する。

長方形基礎を対象にして、形状補正係数による簡易 解と精算解の比較を図6に示す。解析モデルは2節で 述べた面積の基礎に対し、アスペクト比2=0.69、0.16 の2ケースを比較した。図6(b)に示す上下成分の実部 を除いて動的な領域もよく評価できている。細長にな

ると上下実部の高振動数で過小評価だが、本研究では このまま使用する。

3.2 地盤重複効果の補正係数

式(1)~(4)に示す地盤重複効果の補正係数 α は、埋込 み深さと基礎半幅の比の異なる複数の正方形埋込み基 礎に対してインピーダンスが最もよく精算解と合うよ うに、最小2乗法によりそれぞれ推定し、さらに得ら れた α を埋込み深さ比の関数として表現した。図7に 最小2乗法によるフィッティング結果と、地盤重複効 果の補正係数の比較を示す。また、図8にインピーダ ンスの精算解と簡易解の比較を示す。実部の $E/b_e \leq 1$ では埋込みが深くなるほど係数が増加する傾向が見ら れる。基礎に加力したときの応力球根との類推から、

基礎が大きくなるほど影響する地盤の領域が増加し、 重なりあう領域も増えることが予想され、定性的な傾 向は正しいと考えられる。またこの範囲では、補正係 数はフィッティング結果をよく表現できている。虚部 の補正係数について、フィッティングでは(a)~(c)は1.0 付近で最適な近似となっているが、簡便性を考慮して 1.0 の定数とした。図 8 を見ても、精算解とよく対応 していることが分かる。これは、インピーダンスの虚 部は逸散減衰を表しており、接地面積に依存するため、 側面要素と底面要素を単純に足しても過大とならない ためであると考えられる。また、本提案式は、底面要 素にも 3.1 節の形状補正係数を用いることで、矩形基 礎を同様に表現できると考えられる。別途比較したと ころ、虚部は全体的に過大評価であったが、概ね精算 解に対応している結果を得た。

4. 埋込み基礎の基礎入力動の簡易評価法の提案

埋込み基礎の基礎入力動は、底面要素と側面要素に 分離したインピーダンスを用いて、入力動が作用した ときのドライビングフォースを簡易評価し、それと埋 込み基礎全体のインピーダンスを用いて計算する。式 (5)に動的相互作用基礎物理量の関係を示す。

$$\begin{cases} \Delta_x^* \\ \Phi_y^* \end{cases} = \begin{bmatrix} K_{HH} & K_{HR} \\ K_{RH} & K_{RR} \end{bmatrix}^{-1} \begin{bmatrix} F_H \\ F_R \end{bmatrix}$$
(5)

式(6)、(7)にドライビングフォースの簡易評価を示す。 $F_{H} = {}^{b} \gamma_{1} K_{HH}^{b} \times u^{b} + 2\alpha_{HH} ({}^{s1} \gamma_{1} K_{HH}^{b} + {}^{s2} \gamma_{3} K_{VV}^{b}) \times u^{s} - P_{H}$ (6) $F_{R} = K_{HR} \times u^{s}$ (7)

ここで、u^bは底面位置での地動変位、u^sは側面中央位 置での地動の平均変位を表す。P_Hは、底面位置での切 欠き力である。なお、式(7)では、切欠き地盤の側面摩 擦力は考慮していない。それは、本研究が実用的に使 用できる簡便な評価方法を志向しているとともに、一 般的には施工の様子等を考慮して埋込み部の側面摩擦 力を期待せずに設計を行うことが多いという知見を参 考にしたためである。

図9に本提案手法によるドライビングフォースの比較、 図12に基礎入力動の比較を示す。図10(a)水平動について は、簡易解は精算解と良く対応していることが分かる。 (b)回転動では、埋込みが浅い場合はやや大きめの評価、 深い場合には過小評価となっているものの、概ね傾向は 捉えられている。このような傾向になる主な要因として は、図9(b)のドライビングフォースの回転成分の実部が、 精算解と比較して、埋込み深さが増すとともに小さくな っていくことが挙げられる。以上より、今回検討した範 囲では、提案する簡易評価法は簡便性を考慮すると実用 に供しうるものであると言える。

5. 埋込みを有する杭基礎への簡易評価法の応用 5.1 埋込みを有する杭基礎の動的相互作用特性

第3章で提案した埋込み基礎の簡易評価法を、埋込 みを有する杭基礎への応用を試みる。想定するモデル について図11に、基本条件を表4に示す。検討する解 析ケースを図12に、その結果を図13に示す。地盤は 2層で、杭は支持基盤に貫入する支持杭である。埋込 みを有する杭基礎では解析パラメータは多岐にわたる が、埋込みの効果を把握するために、表層厚さを固定 したケース(CASE-1~3)、杭長を固定したケース

(CASE-4~6)を検討する。 インピーダンスの各成分全てにおいて、CASE-4~6 では埋込み深さによるインピーダンスの変化、すなわ ち振動数に対してインピーダンスが波打つ傾向は、埋 込みが深くなるほど極値を取る振動数が高振動数側に

移動していることが分かる。このインピーダンスが極 大となる振動数は、鉛直下方入射時に基礎底面と地盤 の層境界が節とする振動数と対応していた。2 層地盤 での埋込みを有する基礎形式の動的相互作用特性を見 る場合、基礎底面以深の地盤厚さによって分類すると 傾向が読み取りやすいと類推できる。

5.2 インピーダンスの簡易評価法の応用

埋込みを有する杭基礎でも、直接基礎と同様に考え、 底面要素に杭基礎のインピーダンスを使用して計算し た簡易解と精算解を比較し、図14に示す。側面には地 表面基礎を用いている。検討ケースは5.1節の検討を 踏まえ、図12のCASE-4~6とする。なお、水平インピ ーダンスには、限耐法の結果を合わせて示す。限耐法 には本来、埋込みを有する杭基礎の計算法は無いが、 杭基礎の水平地盤ばねの計算法を拡張して用いた。

図14の各インピーダンスの虚部は、埋込み深さに 関わらず、精算解と良く対応している。虚部の逸散減 衰は面積に依存するため、埋込みを有する杭基礎でも 同様に評価可能であると考えられる。低振動数域での 実部は、(f)の埋込みが深い場合の回転成分を除いて概 ね良く評価できていることがわかる。別途行った検討

で、回転成分は杭のパラメータや地盤の 成層条件に因らずに過小であるため、回 転成分に対する側面の寄与が埋込み基礎 とは異なることが原因と考えられる。検 討した範囲では解析条件に因らずに同様 の割合で小さく、杭基礎で回転成分の地 盤重複効果の補正係数を再度検討する必 要がある。(a)、(b)限耐法では、水平実部 の地盤ばねを良く評価できた。一方、虚 部は埋込み側面の逸散減衰を考慮してい ないため、常に過小評価であった。

6. 結論

本研究では、精算解の要素分割による 影響を検討したのち、それと提案する埋 込み基礎の簡易評価式を比較検討してそ の妥当性を確認した。提案式は、インピ ーダンス、基礎入力動ともに埋込み深さ、 アスペクト比の影響を考慮でき、十分実 用的であると言える。埋込みを有する杭 基礎のインピーダンスの簡易評価に応用 したところ、虚部はよく評価できたが、 特に回転成分の実部はより詳細な検討が 必要と考えられる。基礎入力動の評価も 重要であり、今後の検討課題である。

参考文献

- 文学章:地盤と建物との動的相互作用における基礎形式・基礎形状・隣接建物の影響に関する 解析的研究、名古屋大学学位論文、2006.3
- 2) 杉本浩一、護雅史、福和伸夫:基礎の浮上がり に伴う振動方向間の応答連成効果を評価可能な 地震応答解析モデルの構築、日本建築学会大会学

術講演梗概集、B-2、pp.683-684、2010.9

