動的加力実験に基づく免震用オイルダンパーの減衰性能に関する研究

名古屋大学 工学部 環境土木・建築学科

建築学コース 飛田研究室 角空音

1. 背景と目的

大地震時の建物損傷軽減と機能維持の観点から免震建 物の需要は増えており,免震用オイルダンパーは免震構造 の一端を担う部材として重要になっている.本研究では, 様々な動的加力実験を通して,オイルダンパーの減衰性能 把握を行う.また,実験結果に基づくオイルダンパーの詳 細なモデルの構築を行い,一般的なモデルとされる Maxwell モデル(図1)との比較を行う.

2. 免震用オイルダンパーを用いた動的加力実験 2.1 対象ダンパー並びに実験の概要

名古屋大学減災館において6年間設置されていたダン パー8基を用いて実大実験を行う.全てのダンパーはBi-Linear型であり,図2に設計値を示す.実験には出荷検査 に用いられている油圧サーボズの試験機を用いた.試験機 は変位制御であり,計測体制を図3に示す.一般的にオイ ルダンパーは速度・減衰力波形で評価するが,本実験では 正弦波加振を用いた上に速度が生じても減衰力が発生し ない区間である空走距離(図4)で実験結果を評価するこ とから変位・減衰力波形を用いることとする.

2.2 建物取り外し直後のダンパーを用いた実験

建物取り外し直後のダンパーの履歴ループと Maxwell モデルによる履歴ループを比較した(図 5)(図 6). Maxwell モデルは空走距離に対する考慮がなされてい ないため,空走距離の大きいダンパーの実測波形に対する 差が大きくなっていると考えられる.

2.3 空走の特性に関する実験

2.2 より,現状用いられている Maxwell モデルは空走の 発生に対して適していないと考えられるため,空走の特性 を探る実験を行い,空走の発生原因を考察することで,空 走の一般性を探る.

2.3.1 エア抜き加振前後に着目した実験

オイルダンパー製造メーカでは、完成直後の免震ダンパ ーの中の空走が大きい個体に対しては、エア抜き加振と呼 ばれる大振幅低速加振を実施し、空走を少なくする処理を 実施して出荷している.本実験では、エア抜き加振前後に おける空走の変化を確認した.図7、図8より、エア抜き加 振前後において空走距離の減少が見られた.これは、エア 抜き加振を通して空気が溶け込んだインナーチューブ内 の油とインナーチューブ外の油が入れ替わることで、イン ナーチューブ内の空気が排出されることによるものであ ると考えられる.

2.3.2 ダンパー内の圧力変化に関する実験

一般的に建物にダンパーを設置する前にダンパー上部 のバルブから大気を開放することでダンパー内圧力と大 気圧を等しくさせる.本実験では、ダンパー内圧力を大気 圧と比べて等しい状態を標準,高い状態を正圧,低い状態 を負圧とし,それぞれの状態における空走距離の違いを分 析した.図9,図10より,空走距離は負圧>標準>正圧とな っていることが見てとれ、これは負圧状態では油の蒸気圧 とインナーチューブ内の圧力が等しくなったために油の 中に溶け込んでいた空気が気泡として析出し、正圧状態で は空気が油に溶け込んだことによるものであると考えら れる.

2.3.3 時間経過を考慮した実験

建物設置後の空走距離の変化を調べるため,時間経過と 空走距離の関係を分析した.ダンパーを安置して,1日,約 1週,約1カ月が経過したときの空走距離を計測した.図 11より,時間経過と空走距離には相関は見られず,時間経 過に応じた空走距離の変化はないと考えられる.

図 11 伸び側の時間経過による空走距離の変化

2.3.4 ダンパーの取り扱いによる影響を考慮した実験

輸送や設置作業時に傾いたり,微小振動を受けたりといった外的影響がダンパーに及ぶことを想定し,ダンパーを 上下逆にして加力実験を行った.図12,図13より,加力後 に空走距離が大幅に大きくなっていることが見てとれ,イ ンナーチューブ内に空気が入り込んだことが原因である と考える.

3 空走を考慮した免震用オイルダンパーのモデル構築 3.1 提案モデル概要

提案モデルは,バネ要素として空走距離を生じさせる要素(空走要素)を捉えることで Maxwell モデルにバネが直 列で繋がったモデルとしてダンパーを表現する.

3.2 空走の原因の考察

空走の原因として、ダンパー内の空気、バルブの非線形 性、機械的なガタが挙げられるが、実験結果より空走要素 はダンパー内の空気の存在が支配的であると考えられる. ダンパー内では、図14に示すように①空気がかたまりと して存在②空気が細かい気泡として存在③空気が油中に 溶けることで気体としての性質を失っている状態が相互 に移り変わっている.空走が生じるときには①→②、②→ ③の変化の方が②→①、③→②の変化よりも支配的である と考えられ、②→③の変化における気泡を含んだ油の見か けの体積弾性係数は、気泡の圧縮を断熱圧縮とすると式 (1)で表される.油の体積弾性係数を K_0 、気泡を含んだ油 の体積弾性係数を K_a 、大気圧下での気泡の混入率を x_0 、大 気圧を P_0 、内部圧力をP、断熱指数をKとする.

$$K_{a} = \frac{1 + \left(\frac{x_{0}}{1 - x_{0}}\right) \cdot \left(\frac{P_{0}}{P}\right)^{\overline{\kappa}}}{1 + \left(\frac{x_{0}}{1 - x_{0}}\right) \cdot \left(\frac{P_{0}}{P}\right)^{\overline{k}} \cdot \left(\frac{K_{0}}{\kappa \cdot P}\right)} \cdot K_{0}$$
(1)

式(1)より,圧力が高まるにつれ,気泡は油中に溶解し,油 の見かけの体積弾性係数が大きくなる一方で,油中の気泡 が減り,油に溶解する気泡の量が減少することで,体積弾 性係数の上昇率が小さくなることが見てとれる.

図 14 オイルダンパー内の空気の状態図

3.3 提案モデルの理論的背景

図 15 より,空気のみの場合(状態 A)では,体積弾性係数 を K_A,気体定数を R,絶対温度を T,受圧面積を S,空気 の物質量を n とすると,式(2),式(3)が成り立つ.

$$PV = nRT$$
(2)
$$K_{\rm A} = (S \times x_1) \frac{(P - P_0)}{S \times (x_1 - x_2)}$$
(3)

空気と油の場合(状態 B) では、体積弾性係数を $K_{\rm B}$ 、ダンパー内圧力をP'、油に溶解した空気の物質量をn'とすると、式(4)、式(5)が成り立つ.

$$P'V = (n-n')RT \tag{4}$$

$$K_{\rm B} = (S \times x_1) \frac{(P' - P_0)}{S \times (x_1 - x_2)}$$
(5)

式(2) ~式(5)より, $K_A > K_B$ が成り立つ.また,状態Aのと きの剛性を k_A ,状態Bのときの剛性を k_B とすると,体積弾 性係数と剛性の関係より, $K_A > K_B$ のとき, $k_A > k_B$ が成り 立つ.提案モデルの空走要素は状態Aを仮定しているため, k_B を圧力上昇に応じて増加させる必要がある.

3.4 空走要素の提案式

図 14 の①→②では、空気が気泡ではなくかたまりとし て存在するために、空気の表面積に対する油と空気の接し ている面積の割合が気泡のときと比べて小さいため、空気 が油に溶解する速度が遅く、3.2 と同様に体積弾性係数の 上昇率は小さくなると考えられる、①~③の変化に応じた 空走要素の剛性の式を提案する(式 6)(式 7). a, c を空 走マジックナンバー、b, d を空走距離マジックナンバー、 x をバネ全体の変位とする.

(第二象限)
$$k_2 = \left(\frac{1 - \exp(ax + b)}{1 + \exp(ax + b)} + 1\right)^{-1}$$
 (6)

(第四象限)
$$k_2 = \left(\frac{1 - \exp(cx - d)}{1 + \exp(cx - d)} + 1\right)^{-1}$$
 (7)

3.5 パラメータの同定

式(6),式(7)のパラメータを推定するために,第二・四 象限では提案モデル,第一・三象限ではMaxwellモデルを 用いて,減衰力波形の同定を行った(図16).式(6),式 (7)の理論波形との誤差を測る実測減衰力波形は第2.2節 の0D2から得られた実験値とする.

パラメータ		600	東京道名 提案モデル Macouttデル
а	182.227	400	
b	23.010	04)4	
С	130.644	#1 10 -200 -	
d	18.700	-400	

図 16 実測波形及び提案モデル及び Maxwell モデルの比較

4 結論

本研究では、様々な加力実験を通して、オイルダンパー の減衰性能を把握した.実験結果より明らかになった空走 の特性から空走の発生原因になりうる加力条件を明らか にした.また、今後は空走を考慮したオイルダンパーのモ デル化を行い、今後はこのモデルを用いた建物振動解析を 行うことで、空走が建物に及ぼす影響の把握に取り組む. 謝辞

本論文の執筆にあたり, KYB(株)様の協力を頂きました.記して謝意を示します.