地震被災建物に対する被害度の即時評価と計測・表示技術の構築に向けた実験と分析

名古屋大学工学部環境土木建築学科建築学コース 長江研究室 高谷和樹

1. 研究の背景と目的

南海トラフや直下型地震において,広域かつ大規模な地震被 害が懸念されており,多くの建 物が被災することで,多くの避 難民を生むこととなる(図 1). 安全な場所の確保と周囲の人々 への誘導や震災後の復興を考

図1名古屋市の住宅街

え, 建物の安全性のみでなく機能性を含めた, 即時的な被 害度の判断が必要となる. そこで,本研究では,「地震動 による建物の正確な応答を計測する技術の構築」と「判断し た健全性を周囲に表示する技術の構築」,「建物の健全性を 総合的に評価する技術の構築」を並行してめざす. 特に第1 段階として,「LED 照明による被害度の表示技術の構築」と 「角速度計による層間変形角計測技術の構築」,「ロッキン グによる建物被害度の評価技術の構築」をめざす.(図2)

図2研究チャート

2. 計測・表示技術の構築に向けた実験の概要

設備機器や非構造部材の高機能化と、シャッターやカー テンウォールにおける躯体との層間変形追従性、昼夜間や 場所によらない周囲への表示を考え、変位計より設置が容 易である角速度計による層間変形角と、LED 照明を用いた、 非構造部材によるセルフモニタリングシステムを構築する. 2 層 2 連ユニットハウスの 1 軸加振を行った.1 層屋内に LED 照明を設置し、各計測器のデータより被害度を評価し、 その程度に応じて照明の色を白、黄、燈、赤の4段階に変化 させる、試験体の様子、加振条件を図3に示す.

図3 2層ユニットハウス実験(2019.12)に参加

3. 計測器精度の検討

定格容量が±15.71 rad / s の共和電業製の GSAT-A-900 と定 格容量が±1.75 rad / s の村田製作所製の SCC1300-D02 の 2 種類の角速度計の精度検討を,変位計を用いた層間変形角 と角速度を 1 階積分した層間変形角で比較を行った. ピー クごとの変位計による層間変形角で比較を行った. ピー クごとの変位計による層間変形角に対する角速度計による 層間変形角の比と,その時の角速度計による層間変形角を 図 4 に示す. JMA 神戸波 10%加振では SCC1300-D02 におい て,1/1000 rad 以上の変形角で±20%の精度が確認でき, GSAT-A-900 と比較することで,定格容量による計測値の信 頼性範囲の変化を確認した. 設置する建物やその階で想定 される変形角の最大振幅や振動特性を考慮し,計測器を変 えることは難しいため,計測値の計算処理による対応が必 要である.

4. LED 照明による被害度表示

基礎梁上の1層の層間変形角を計測値から逐次計算する ことで LED 照明の色を変化させた.逐次計算には NationalInstruments 社のシステム開発ソフトウェアである LabVIEW を用いた.第6加振時の層間変形角の時刻歴波形 を図5に,そのときのLED照明の色の変化を図6に示す.3 秒ごとに計測値から閾値の判定をしたため,計測値と色の 変更までの間に遅れが生じた.層間変形角の計算負荷と地 震動や建物の特性による変形角応答を考慮した,判定間隔 と周囲の人々が適切な避難を行えるような,閾値の設定が 必要である.

5. 評価技術構築に向けた実験の概要

地震動によって建物が吸収したエネルギーは、上部構造 のみでなく、基礎ロッキングや基礎滑りを考慮する必要が あり、住宅の多様性に対応するため解析モデルの作成(図 9)も視野に入れ、基礎ロッキングによる地盤のエネルギー 吸収量の分析を行う.分析は、3階建て木造住宅の3軸加振 実験データを用いた(図 7).振動台上に土槽地盤を作成し、 べた基礎住宅を設置することで周辺地盤が再現されている.

図7 3 階建て木造住宅実験 (2019.2)のデータ利用 図 9 研究室内におけるモデル作成状況

6. ロッキングによる転倒モーメントと抵抗モーメント

ロッキング時の水平加速度による転倒モーメントと地盤 反力による抵抗モーメントの比較を行った.転倒モーメン トは各階床及び基礎上の慣性力と建物高さから計算した. 抵抗モーメントは,地盤反力と建物重量が釣り合っている とし,建物重量および地盤反力の応力中心と重心間の水平 距離から求める.接地面は基礎四隅の鉛直変位記録から基 礎面全体の形状を補完した値が 0以下の要素とし,接地面 応力を一定と考えることで,接地面の図心を応力中心とし ました(図 10).転倒モーメントと抵抗モーメントの時刻歴 波形を図 11 に示す.抵抗モーメントに乱れがみられるが, 基礎面が微小な変位によって大きく変化するためだと考え られる.

7. 転倒モーメントと抵抗モーメントのエネルギー吸収

転倒モーメントとロッキング角の履歴曲線(図 12)から, 方向ごとのエネルギーを計算し,足し合わせることで転倒 モーメントによるエネルギー吸収とした.基礎分割要素ご とに圧縮応力と変位の関係を図 13 のように仮定し,要素 の鉛直変位時刻歴と合わせて抵抗モーメントによるエネル ギー吸収とした. oyは建物重量と地盤反力が常に釣り合っ ているとし,建物重量を接地面積で除した値とした.両者 の時刻歴を図14に,加振ごとの最終値を図15に示す.JMA 神戸波25%加振と,JR 鷹取25%加振の小振幅加振では,抵 抗モーメントによる吸収エネルギーの方が大きくなるが, それ以外の加振では,転倒モーメントによる吸収エネルギ ーの方が大きくなる.分割地盤要素において変形がそのま ま残留すると仮定しているため,要素の最大変形後にエネ ルギー吸収が起きないためであると考える.ヒステリシス を考慮した地盤モデルによるエネルギー吸収量を検討し, 住宅建設時の地盤調査の範囲での地盤物性値からエネルギ ー吸収量の解析が行えるようにしていく必要がある.

図15 加振ごとの吸収エネルギー最終値

8. 結論と今後の課題

リアルタイム応急危険度判定システムの構築に向けて, 計測技術,表示技術,評価技術について実験と分析を行っ た.建物の構造や層数,周辺地盤の状況,想定される地震動 等の物理的な特性,さらには周囲の人々の年齢層や土地利 用によるの違いを考慮した判断が必要になると考え,今後 は多様性を考慮して計測・評価・表示できるよう検討してい く.

参考文献

- 古田昌弘,高橋武宏,山田洋平,柏尚稔,林和宏,井上貴仁,長江拓也:地中配管設備等の 非構造部材を含む3階建て住宅の機能を検証するE-ディフェンス実験その10,日 本建築学会大会学術講演便概集
- 国土交通省国土技術政策総合研究所,国立研究開発法人建築研究所:木造軸組工法 住宅の許容応力度設計(2017 年版)
- 3) 国土交通省住宅局建築指導課,国土交通省国土技術政策総合研究所,独立行政法人 建築研究所,日本建築行政会議:2007 年版建築物の構造関係技術基準解説書