免震建物の地震・強風時の応答性状とダンパーの減衰性能に関する研究

名古屋大学工学部環境土木・建築学科建築学コース 福和研究室 金子直人

1. 背景と目的

南海トラフ巨大地震の発生が危惧される中,免震建物の 需要が高まることが考えられる.一方昨年10月に大手メー カーの免震装置偽装が明らかになり,免震建物の普及が進 みにくくなることが懸念される.本研究では免震建物の地 震,強風時の詳細な応答性状を振動数特性,加速度分布に 注目し把握する.また免震層の固有周期,減衰定数等の各 種要因による変化の分析に加え,個々の免震装置の性能評 価を行いそれらが建物全体へ与える影響を検討する.

2. 対象建物・観測体制・振動実験の概要

対象建物は名古屋大学東山キャンパスにある名古屋大学 減災館である.地上4階のRC造免震建物で,振動実験用の 屋上実験室をもつ.免震層は基礎免震層と屋上実験室を支 える免震層の2つを持つ.対象建物は常時の観測体制が整 っており図1,2に観測体制の概要を示す.常設加速度計は7 点,免震層では免震層相対変位と擁壁土圧を計測できる.

対象建物は環境条件や経年変化等の影響を含めた応答性 状分析のため,自由振動実験と強制振動実験を継続的に行っている.本論では自由振動実験について述べる.

自由振動実験では基礎免震層の油圧ジャッキで上部建物 を西側へ最大 130 mm 静的に変位させることができ,ジャ ッキ解放により自由振動を励起させる.

3. 地震・強風記録の分析

微動,強風,地震時の屋上/基礎免震層床の伝達関数を図 3 に示す.強風時は風の影響で高振動数域まで倍率が大き いが建物1次固有振動数の2Hz付近では微動時と倍率が同 程度である.地震時は2Hz付近のピークが長周期側に移動 し応答倍率も低減され免震効果がみられる.しかし設計免 震固有周期(5.2s)より大幅に短周期であり,小振幅では対象 建物が有する免震性能を十分には発揮していないと言える.

図4に地震時,図5に強風時の加速度応答分布を示す.横軸に図4は各センサーの絶対加速度最大値を,図5はguを 風速に対応させ,他は一つ下の計測点からの加速度最大値 の増分をプロットした.縦軸には各計測点の高さをとった.

地震時は基礎直下加速度が約3gal以上の記録は全て,免 震層床に比べ上部建物の応答が低減される免震建物の特性 が表れた.3gal以下では免震特性のみられる記録とそうで ない記録が混在し,その要因の考察は今後の課題である. 強風時は風速が大きいほど上部建物応答が大きい.

4. 自由振動実験に基づく免震層の性能評価

4.1 自由振動波形のフィッティング

図 6 に自由振動実験の結果を示す. ダンパー有りの(b)は ダンパー無しの(a)より振動の収束が早く, ダンパーの減衰 作用が確認できる. ダンパー無しでは減衰自由振動となる が, ダンパー有りでは非振動的で解放後すぐ中立軸に漸近 する運動となることがわかる.

続いて対象建物で 2014 年 5 月から 2018 年 12 月までで行 係数(12116 kN/(m/s))を破線を示した. われた 66 回の自由振動実験について、フィッティングを行 い固有周期, 減衰定数を推定した. 免震層の有する減衰性 能を評価するため、ダンパー有りの実験でフィッティング を行った.対象波形は基礎免震層相対変位波形(図 6 の(b)) とし、モデルは1自由度粘性減衰モデルを用い、フィッティ ング区間は加速度が最大となる時刻から速度が収まる時刻 までとした. 推定した固有周期, 減衰係数を図 7,8 に, 推定 **5. 結論** 値と初期変位の関係を図9に示す.

対象建物の固有周期は大振幅時ほど長周期化するという 振幅依存性が知られている 1). 今回の結果は図 9 より初期 変位が大きいほど固有周期だけでなく減衰定数も大きくな っている.しかし図 7,8 で初期変位が同程度の後半の実験 で、固有周期が波打つように変化し全体的に徐々に値が大 きくなっていることがわかる.

ジャッキを増設し初期変位が大きくなって以降の実験の みの月ごとの結果を図 10 に示す. 増設後の実験は初期変位 が同程度であり、初期変位依存性の影響を除外できる.固 有周期は気温が高いほど大きく、2017年と2018年を比べる と1年の経過でわずかに大きくなっており、温度依存性と 経年変化を確認した.しかし1年の中で最も気温が高い時 期と固有周期が最大となる時期にずれが生じており,今後 詳しい検討が必要である.一方減衰係数には温度依存,経 年変化ともにはっきりした傾向は見られない.

4.2 オイルダンパーの性能評価のための実験

次に各ダンパーの減衰性能を個々に評価する. そのため に基礎免震層のオイルダンパー全てにひずみゲージを貼り, 直接ダンパーのひずみを計測する.実際に運用中の免震建 物で,免震装置を取り付けたまま装置個々の性能評価を行 った例はこれまでになく、振動実験が整っている対象建物 の利点を生かした独自性のある計測であると考える. 図 11 にダンパーの概形とひずみ計測位置を示す.

減衰力と変位,速度の時刻歴変化を図 12 に示し、併せて 計測ひずみ c から減衰力 P を求める式を示す. E は鋼材のヤ ング係数(205 kN/m²), A はロット断面積(11309 mm²)である. 図中のダンパー,変位計の番号は図2と対応している.

オイルダンパーは速度に比例し減衰力を発揮するが、今 回の結果ではダンパーの減衰力の立ち上がりが速度の発生 より遅れている.中でも②は他のダンパーより減衰力の立 ち上がりが特に遅く減衰力が最大となる時刻もずれている. 加振方向が東西のため斜め方向の⑦,⑧はダンパー変形量 が小さく、減衰力も小さい. このように各ダンパーの性能 の差を計測により明らかにできた.

次に減衰係数を設計値と比較するため、図 13 に減衰力-速度関係を示す. ここでの設計値とは設計図書に記載され た、ダンパー製造時の目標となった減衰係数である.減衰 力が速度に比例するため傾きが減衰係数となり、その設計 値(2500 kN/(m/s))を破線で示す. また東西方向減衰力の合計 値を用いた免震層全体としての減衰力-速度関係を図 14 に 示す.図14には4.1のフィッティング結果から求めた減衰

図13で、各ダンパーで速度が最大になって以降は傾きが 設計値とおおよそ一致するため想定された性能を発揮でき ているといえる.図14でも速度が最大値となって以降はフ ィッティング結果に近い減衰係数となっている. 以上より 各ダンパーの性能ばらつきが免震層全体に与える影響は小 さいと考えられる.

本論では免震建物の応答性状について, 微動, 台風, 地震 時で振動数特性と加速度分布が異なることを確認した.ま た免震層について、フィッティングを行うことで固有周期、 減衰定数の経年変化,初期変位依存性,温度依存性による 影響を考察した.またオイルダンパーに注目し各ダンパー の性能の差を明らかにし、その差が免震建物全体に与える 影響を評価した.

参考文献:1) 成澤健太 「実在免震建物を利用した振動実験環境の構築」 2017 年