ベアリングと磁石を用いたせん断振動模型の開発

名古屋大学工学部環境土木・建築学科建築学コース 福和研究室 長畑俊弘

1. 背景と目的

2011 年 3 月に発生した東北地方太平洋沖地震では首都 圏などの超高層建物が長周期地震動により大きく揺れた. 2016 年 4 月に発生した熊本地震では熊本県阿蘇郡西原村 で約2mの永久変位を伴う長周期パルスを観測した.この ような地震動が大都市圏で発生した場合,免震・超高層建 物に甚大な被害が生じる.これらの被害軽減のためには 防災・減災意識啓発として長周期地震動への理解が必要で ある.そのためには剛性率が小さく,せん断振動の伝播を 建物と地盤の両方で表現することができる模型が必要だ.

せん断振動模型の使用方法として,一般に向けた防災 意識啓発のための利用と,振動論を学ぶ学生向けに振動 教材及びせん断振動実験に利用することが挙げられる.

2. せん断振動模型の概要と計測機器の開発

2.1 せん断振動模型

せん断振動の伝播を視覚的 に理解できる模型として,図1 のようなせん断振動模型を開 発した.これは木板,磁石,鉄 球で構成されており,磁力を復 元力とした模型である.模型の 1つの層には木板に磁石を接着 し,ベアリングとなる鉄球を挟 み込む形で成り立つ.鉄球の大 きさに応じて磁石間の距離 (以下「磁石間距離」と称する) が変化するため,磁力に基づく 復元力の強さを操作すること

が可能である.層を重ねるこ 図1 せん断振動模型 とで各層が建物の各階や地盤の各層に相当し,建物・地盤 のせん断振動の伝播を表現することができる.また,構成 材料はすべて市販されているものであり,安価に入手す ることができる.

2.2 計測機器の開発

せん断振動模型の特性試験をするにあたって, MEMS (Micro Electro Mechanical System) を用いた軽量の模型実 験用小型加速度計を開発した.これにより 0.1~2000 gal の 加速度を計測できるようになった.

3. せん断振動模型の特性試験

特性試験として単層 (図 2)の実験を行い,対象模型の 特性値を計測した.実験方法としては静的載荷実験,自由 振動実験,ホワイトノイズ加振実験の3種類の実験を行った.

3.1 静的載荷実験

図3のように, 錘を徐々に増加させ定規を用いて目視 により変位を計測することで静的な剛性率を測定した. 得られた荷重一変位関係(図4)から弾性範囲と考えられ る範囲でその勾配から剛性率を求め、固有周期を算出した (図 5).

図 5 静的な剛性率と固有周期

3.2 自由振動実験

図 6 のように計測対象に初期変位を与え、糸を切断す ることで自由振動させる.得られた加速度波形からゼロ クロッシング法より固有周期を算出した.図7に磁石間距 離と動的な固有周期・剛性率の関係を示す.

図 6 自由振動実験の実験方法

図 7 動的な剛性率と固有周期

3.3 ホワイトノイズ加振実験

図 8 のように、振動台に試験体を設置し、最大変位 50 mm・振動数 0~20 Hz までのホワイトノイズを 5 分間入力 した.得られた加速度波形の 100~263.84 秒をフーリエ変 換し、試験体/振動台で伝達関数を求めた.得られた伝達 関数に対し 1 自由度系の伝達関数にスペクトルフィッテ ィングを行い固有振動数と減衰定数を推定した.その推 定値から単層分の重さに変換した固有周期、剛性率を算 出した結果を図 9 に示す.

図 9 動的な剛性率,固有周期,減衰定数

また、ベアリングの材質を直径 6 mm の鉄球と直径 6 mm のプラスチック球で比較した結果 (図 10)、ベアリン グの材質は剛性率には影響をあまり与えず、減衰定数に

図 10 ベアリングの材質の比較

大きな影響を与えることが分かった.

3.4 単層のせん断振動模型の物性値のまとめ

表 1 に各実験の結果による単層での対象模型の物性値 を示す.全ての実験で,磁石間距離に応じて剛性率が変化 していることが分かる.したがって,両面に磁石を接着さ せた木板であれば,ベアリングの大きさと材質の組み合 わせで剛性率と減衰定数をそれぞれ意図的に変化させる ことができることが分かった.

今後単層での対象模型を使用する際に,安定して性能 を発揮すると考えられる適用条件を以下の通りである.

- ・両面に磁石を接着させた木板
- ・鉄球の直径が 5~10 mm
- ・直径 5 mm のときの変位範囲 0.7~2 mm
- ・直径 6 mm のときの変位範囲 0.8~3 mm
- ・直径 8 mm のときの変位範囲 1~4 mm
- ・直径 10 mm のときの変位範囲 1~5 mm

表 1

磁石	鉄球の直径 [mm]	磁石間距離 [mm]	剛性率 [N/mm]	固有周期 [s]	減衰定数 [%]
両面	2.5	2.5	1.10	0.061	3.4
	5	5	0.76	0.074	
	6	6	0.58	0.084	
	8	8	0.40	0.11	
	10	10	0.27	0.13	
	12.7	12.7	0.27	0.12	
片面	2.5	8.5	0.28	0.11	15~35
	5	11	0.24	0.12	
	6	12	0.15	0.15	
	8	14	0.11	0.18	
	10	16	0.11	0.20	
	12.7	18.7	0.11	0.19	

4 結論

本研究ではベアリングと磁石を用いたせん断振動模型 の開発を行った.次に対象模型の単層での特性試験を行 うことで,対象模型の特性の傾向を推定するに至った.ま た,実験的に物性値と適用条件を検討した.

今後は実験手法として動的な力一変位関係を求めるこ とや、多層での検討が残されている.また、実験材料に関 して、本研究では層に木板を用いたが、摩擦の影響が大き かったので、木板の代わりにアクリル板などの磁石に影 響しない材質の層やプラスチック球以外の材質の球を使 用するなど、多くの改善の余地がある.