高密度常時微動計測に基づく軟弱地盤に立地する杭基礎中層 RC 造建物の 振動特性と動的相互作用効果に関する研究

名古屋大学工学部社会環境工学科建築学コース

1. 背景と目的

2012年8月29日に発表された内閣府による被害想定で は、南海トラフ巨大地震の揺れによる全壊棟数は約627,000 棟だが、耐震化率を向上させることで被害を約4割減らす ことができるとされており、東海地域における建物の耐震 化は喫緊の課題である。濃尾平野西部に位置する某市庁舎 (写真1)は、防災・減災対策の基幹である重要施設であるが、 耐震性能が不足していると診断され、耐震補強計画が作成 されている。耐震補強前の建物振動特性を把握することは、 被害予測や耐震補強効果評価の為の解析モデルの作成及び、 補強前後における振動性状変化を捉えるために極めて重要 である。

対象建物は、軟弱地盤に立地する杭基礎中層 RC 造建物 であり、地盤と建物の動的相互作用効果が大きいこと、不 整形な平面・断面形状による複雑な振動性状を持つこと、 これらが耐震補強によって変化することが推測される。そ こで、本研究はこの市庁舎を対象とし、強震観測や高密度 な常時微動計測に基づき、現状の振動特性と相互作用効果 の影響を把握することを目的とする。

2. 対象建物と観測体制の概要

市庁舎は1976年4月に竣工された上部5階、棟屋2階の 杭基礎 RC 造建物である。基礎形式は杭先端がGL-47.0mの PC 杭による支持杭である。平面形状は長辺方向8スパン (47.2m)×短辺方向3スパン(25.3m)の長方形平面を基本とし、 1階、2階には1~2スパン程度の小室が付随する。2階には 吹き抜け(長辺1×短辺2スパン)を、5階には20.8m×14.3m の平面で2層吹き抜けの議事堂を有している。階高は1階 が4.8mで、その他の階が3.8mである。

強震観測として、建物内の屋上中央と1階南東及び、地 盤上の計3点にそれぞれ3成分の地震計を設置した。常時 微動計測は、地盤を中心とした微動計測1(2012年11月4 日実施)と、建物を中心とした微動計測2(2012年11月18日 実施)の2回に分けて高密度同時計測を行った(図1)。

3. 対象建物周辺の地盤構造と地盤震動特性

地盤構造とその震動特性を推定することは、地震時の地 盤増幅や動的相互作用効果を考慮する上で重要である。そ こで、市庁舎近傍の地盤構造に関する分析を実施した。市 庁舎から 500m 程度離れた K-NET 観測点(AIC003)と愛知県 震度情報ネットワークシステム観測点(AICP10)の2地点で 得られた複数の地震波形の H/V スペクトルの平均を図2に 示す。また、この2地点と市庁舎における常時微動計測に よって得られた H/V スペクトルを図3に示す。さらに、市 庁舎におけるL字アレイ探査、同地点におけるN値からの 推定、愛知県震度情報ネットワークシステム観測点近傍の 市民病院における PS 検層のそれぞれによるS波速度構造を 図4に示す。地震動のH/Vスペクトルの平均と微動時のH/V スペクトルでは、1.0~1.3Hz にかけて共通したピークが認 められる。この振動数はN値から推定したVsから算定され る固有振動数と一致し、浅部地盤に起因する固有振動数と 推測される。以上から市庁舎付近の地盤は工学的基盤が深

4. 地震時と微動時における建物の基本的な振動特性

地震記録の分析には、2012年12月7日に発生した三陸沖 の地震の際に、市庁舎屋上と周辺地盤の地震計で得られた 記録を用いる。これをもとに推定した伝達関数とその同定 結果を重ねて図5に示す。なおシステム同定は1次固有振 動数のみを対象として、2.0~4.0Hzの範囲で行った。常時 微動計測記録から推定した地盤建物連成系(RF/GL)、スウェ イ固定系(RF/1F)、スウェイ・ロッキング固定系(RF/(1F+H0)) の伝達関数を図 6 に示す。ここで H は有効高さを、 θ は図 7 に示す観測点 D、d より算出したロッキング回転角を表す。 長辺方向・短辺方向のスウェイ固定系と地盤建物連成系の 伝達関数に共通した 2.0~3.0Hz(図中 I 区間)は、地盤と基礎 が一体となった挙動をしていると考えられる。位相差が負 になっているため、振幅のみを対象として同定を行った。 表1、表2はそれぞれ地震記録及び微動記録への同定の結果 得られた固有振動数、減衰定数を示す。建物固有振動数に 対して、地盤-建物連成系の固有振動数の低下が明瞭である。 減衰定数は、複雑な立体的挙動や相互作用効果等の影響に より過大評価をしている可能性があり、今後の検討を要す る。表3に地盤-建物連成系の固有振動数における長辺・短 辺方向それぞれのスウェイ(S)・ロッキング(R)・弾性変形(E) 率を示す。位相差により総和が 100% とならないが、S 率・

R 率が 30%程度と高く、相互作用効果が大きいことが分か る。長辺方向は短辺方向に比ベスウェイが大きく、短辺方 向は長辺方向に比べロッキングが大きいといえる。杭基礎 建物であるが、ロッキングが大きいことが明らかとなった。

5. 微動時における基礎スラブの面外変形と立体振動特性

建物1階の6地点に設置した上下成分のセンサから、2 点間の差によりロッキング角を算出し、それらを基に RF/(1F+H0)の伝達関数を推定した。その結果を図7に示す。 振幅倍率が、短辺方向ではセンサ位置による影響は認めら れないが、長辺方向では3~5倍と大きな差が見られ、固有 振動数及び減衰の評価が、用いるセンサ設置によって大き く異なる可能性があることが明らかになった。この原因と して基礎スラブを剛体と見なせない面外方向の変形が生じ ている可能性が考えられる。そこで、基礎スラブの面外変 形角を算出し(図8)、ロッキング回転角と比較した。そのフ ーリエスペクトルを図9に示す。基礎スラブの面外変形角 は、短辺方向では小さいが長辺方向は 3.0~4.5Hz にかけて 励起されていることが分かる。図4より表層の平均S波速 度を 170m/s とし、基礎幅 48m と地表における表面波の波長 λが一致すると仮定すると f=3.5Hz と計算され、微動観測記 録と対応する。表面波の波長と基礎幅が一致する時に大き な面外変形が生じている可能性がある。

図7の伝達関数や図9のフーリエスペクトルにおけるピ ークを含む振動数域(I~V)における立体的な挙動を、アニメ ーションツールを用いて確認した(図 10)。ア、イ、ケでは 地盤と基礎スラブが一体となったロッキング挙動が、カ、 ク、コでは基礎スラブの面外変形が、ウ、エ、オ、キでは 上階での捩れが確認された。エ、キ、クでは弾性変形を、 コでは建物のロッキング挙動を確認した。以上のような複 数のモードが同一振動数帯に確認される複雑な挙動をして いるために伝達関数のピークが明瞭でないと考えられる。

ウ

T

視点:南東

Amp. x1500

視<u>点:</u>南

I: 2.0~3.0Hz

t=0.4sec

9sea

6. まとめ

今回の高密度観測により地盤 ・建物双方の挙動を詳細に捉え ることで、動的相互作用が大き いこと、基礎スラブに面外変形 が生じていることが明らかとな った。また、複雑な立体的挙動 を捉える事ができた。今後は、 詳細な分析を進めつつ、地震時 の挙動を明らかにするための観 測体制の構築や、得られた知見 を考慮したモデルの作成を通し て、市庁舎の耐震性能と補強効 果の評価を行う予定である Amp. x1500

RF/GL fitting

5

RF/GL fitting