地震記録に基づく PCaPC 造7 階建て建物の振動特性に関する研究

名古屋大学工学部社会環境工学科建築学コース 飛田研究室 松井政樹

1. はじめに

一般の建築物には階数が十数階建てまでの中低層建物 が多い。これらの建物は、地盤と建物の動的相互作用の 影響が大きいと言われており、また、建物の形状も様々 なため複雑な挙動を示すことが多く、振動特性が十分に 明らかにされていない。また、振動実測に基づく分析は あまり行われておらず、実際の振動特性を把握するため にも実測記録の果たす役割は大きい。

名古屋大学東山キャンパス内では、建物の強震観測シ ステムが整備されており、多数の建物で建物近傍の地盤 及び中低層建物の地震時挙動の観測が行われている。こ こでは、建物、地盤、杭中の計 15 地点 36 成分の超高密 度の観測を行っている PCaPC 造 7 階建て建物について、 振動特性の検討を行う。原子力関連施設などの重要構造 物以外でこれほどの高密度の観測を行っている建物はあ まり見られず、中低層建物の振動特性を把握するには貴 重なデータと言える建物である。

2. 対象建物及び強震観測概要

対象建物は名古屋大学構内に立地する PCaPC 造 7 階建 て建物の環境総合館である。平面形状は長辺方向 5 スパ ン(49.5m)×短辺方向 2 スパン(16.0m)の長方形平面で東西 に整形な偏心の少ない建物である。強震観測は、建物内 8

表1 建物概要

延床面積	5956.08m²	構造種別	地上PCaPC造
階数	地上7階		地下RC造
	地下1階	骨組形式	EW方向 ラーメン構造
高さ	33.4m		NS方向 耐震壁付きラーメン構造
軒高	29.7m	基礎種別	杭基礎PHC杭
			杭長 36m,32m

地点、地盤地表面2地点、地盤地中1地点、杭中4地点 の計15地点で高密度の観測を行っており、水平成分24ch、 上下成分12chのデータが得られる。これまで既製杭の中 に加速度地震計を設置した例はあまり見られない。2004 年1月6日から2005年1月9日までに26の地震記録が 得られている。ここでは主に、2004年9月5日23時57 分に発生した紀伊半島南東沖の地震(Mag.7.4)と2005年1 月9日に発生した愛知県西部の地震(Mag.4.4)を取り上げ ている。紀伊半島南東沖の地震は規模が大きく、長周期 の成分が優勢な地震として、愛知県西部の地震は対象敷 地付近の直下で発生した短周期成分が優勢な地震として 取り上げた。表1に建物概要、図1に強震観測点を示す。 (b)は基準階平面図を兼ねる。

高密度の観測を行ってもデータが正確でなければ十分 なデータとは言えない。特に地盤や杭の地震計について は設置の際に方向がずれてしまうことがある。本論では 建物、地盤ともに剛体的に動く長周期の成分が優勢であ った地震波から、バンドパスフィルタをかけて長周期成 分のみを取り出し、波形を比べ、オービットを描いて方 向のずれを確認し補正を行った。

3. 連成系と基礎固定系の固有振動特性

地盤地表・1 階中央・1 階西端部・1 階北端部・屋上中 央の 5 点の記録から伝達関数を算出した。図 2 に紀伊半 島南東沖の地震における地盤 - 建物連成系(RF/GL)、スウ ェイのみ固定した基礎固定系(RF/1F)、スウェイとロッキ ングを固定した基礎固定系(RF/(1F+H))の伝達関数を示 す。RF/GL と RF/IF の伝達関数を比較し、RF/IF と RF/(1F+H)の伝達関数を比較するとそれぞれピークの位 置がずれているのがわかる。RF/GL と RF/1F の伝達関数 のずれからはスウェイの影響が認められ、RF/1Fと RF/(1F+H)の伝達関数からロッキングの影響が認められ る。NS 方向と EW 方向で比較するとスウェイの影響には 差がないがロッキングの影響は EW 方向に比べて NS 方 向が大きいことがわかる。これは EW 方向が桁行方向で ロッキングの影響を受け難いからであると思われる。そ こで、フーリエスペクトルの振幅比からスウェイ・ロッ キング率を算出した結果、NS 方向スウェイ率 3.7% ロッ キング率 21.6%、EW 方向スウェイ率 4.6% ロッキング率 9.6% であった。

各地震の伝達関数を用いて 1 自由度カーブフィット法 より固有振動数を算出した。屋上最大変位との関係を図 3 に示す。NS 方向 EW 方向ともに RF/GL<RF/1F<RF/1F+H

の順に固有振動数が高くなっている。RF/IF+H では ややばらつきもあるが、RF/GL、RF/IFの固有振動数には 振幅依存性の傾向が見られる。

4. 最大値の増幅特性

多数の地震記録を用いて簡易的に振動数領域での増幅特 性についての検討を行う。地震動の卓越振動数を表す指 標として、等価卓越振動数(PGA/PGV/2)を用いる。図4 に等価卓越振動数と1階と屋上の最大加速度比 (PRA/PBA)の関係を示す。地震動の卓越振動数によって 増幅度が異なっているのがわかる。また、増幅度が高く なっている振動数帯域は図2のRF/IFの伝達関数のピー クが現れている振動数帯域と良く対応している。

5. ねじれ振動

整形な建物はねじれにくいと考えられるが、対象建物 では中央と端部の最大加速度に差があることからねじれ の可能性がある。そこで屋上における東西端部における NS 成分の差の 1/2 をねじれ成分、東西端部の NS 成分と 中央の NS 成分の 2 倍の和を 4 で除したものを並進成分と し、紀伊半島南東沖の地震と愛知県西部の地震のそれぞ れの成分を求めた。加速度フーリエスペクトルを図5図6 に示す。これらから、ねじれ成分の固有振動数と並進成 分の固有振動数が近接していることがわかる。2 つの固有 振動数付近のピークにおけるねじれ成分と並進成分のス ペクトル振幅を比較すると、紀伊半島南東沖の地震では ピーク高さが同じくらいで、愛知県西部の地震ではねじ れ成分が並進成分よりも大きい。図 7 にねじれモードを 示す。並進成分に対するねじれ成分の割合が大きい愛知 県西部の地震は紀伊半島南東沖の地震と比べて大きくね じれているのがわかる。このように、整形な建物でもね じれの寄与が大きいことがわかる。

6. 地盤 - 杭 - 建物の応答

図 8 に紀伊半島南東沖の地震での杭端、杭中-10m、1 階、屋上、地中-40m、地表のフーリエスペクトルを示す。 地中と地表では増幅効果が見られる。屋上は 2Hz 付近、 0.3Hz 付近でピークを持ち、これはそれぞれ建物の固有振 動数と地震基盤からの固有振動数である。1 階は建物と地 盤両方の影響を受けている。動的相互作用の影響で 1 階 は地表に比べて小さい値になっている。杭端は地中と同 じようなスペクトル形状をしており、上部構造の影響は あまり見られない。

7. まとめ

今後、ねじれにくいとされる整形な建物がねじれる原 因について検討する必要がある。また、高密度の観測シ ステムを生かし、地盤 - 杭 - 建物の振動特性を詳細に把 握し、他の構造物との振動特性を比較し、検討していく 予定である。

