免震建築物の地震時応答特性に関する研究 ~名古屋大学医学部付属病院中央診療棟を対象とした各種影響検討~

1. はじめに

兵庫県南部地震以降、耐震性能に対する社会の要請は、 従来の人命の保護のみならず、地震被害による経済損失や 地震後の機能損失の防止をも目的とするようになってきた。 このような高度な要求を達成することのできる耐震工法の ひとつとして免震構造があり、近年急速に普及している。 また、2000年の免震構造物関連告示により、それまで大臣 認定を必要としていた免震設計が、一般の建物と同様に通 常の建築手続きで建設することが可能となり、今後さらな る増加が予想される。しかしながら、これによって大臣認 定を得る際に必要であった地震応答解析を行わない免震建 築物が増加することになり、免震建築物の地震時応答特性 を詳細に把握することが重要となってくる。このような観 点から、本論では名古屋市昭和区に建設予定の名古屋大学 医学部付属病院中央診療棟を対象として、質点系モデルで 様々なパラメータを設定して地震応答解析を行い、免震建 築物の地震時応答特性の把握を試みた。

2. 対象建物及び地盤概要

2.1 対象建物概要

対象建物は鉄骨鉄筋コンクリート造純ラーメン構造で、 地上7階地下2階建の病院である。長辺方向9.0m×13ス パン、短辺方向 7.2m×7 スパンのほぼ長方形で、一部吹き 抜け、柱抜けがあるが整形な建物である。免震装置はアイ ソレータとして天然ゴム系積層ゴムを 34 基、鉛プラグ入 り積層ゴムを 72 基、減衰装置としてオイルダンパーを 8 基(長辺方向4基、短辺方向4基)設置し、免震層を地下1 階の下に配置している。免震装置の復元力特性は Trilinear型で、第1、第2降伏点は2種類の鉛プラグ入り積 層ゴムの降伏変位(10.8mm、12.6mm)に対応している。

2.2 地盤概要

建設地及びその近傍では、地震防災上の観点から地盤調 査が多数行われている。常時微動計測や強震観測記録など の分析から、建設地の表層地盤の卓越周期は3.5秒付近で あると考えられる。

3. 解析モデル

解析モデルは、上部構造を一層一質点系の等価せん断バ ネに、免震層は各免震装置ごとにせん断バネに置換する。 解析モデルを図1に示す。上部構造の履歴法則は、地下1 階は RC 耐震壁が主な耐震要素であることから原点指向型、 1~7 階は純ラーメン構造であることから修正武田型とす る。上部構造の固有周期及び想定変形 40cm における全体 系の固有周期を表1に示す。また、免震層の復元力特性を 表2に、上部構造の復元力特性を図2及び表3に示す。

4. 検討項目及び解析パラメータ

本論は、表4に示す4つの項目について検討する。項目

名古屋大学工学部社会環境工学科建築学コース 飛田研究室 木村憲司

1では入力波の位相特性や振幅レベルによる影響を、項目2 では建設地地盤の周期特性の影響を、項目3では上部構造 の剛性や減衰タイプによる影響を、項目4では免震層の固 有周期や免震装置の種類による応答の変化を検討する。

		第1折点	第2折点			
	降伏荷重 (kN)	17634.7	20518.3			
	降伏変位 (mm)	10.8	12.6			
	初期剛性 (kN/mm)	163	32.9			
	接線剛性 (kN/mm)	17	6.8			

表3上部構造の復元力特性

				• •	1. 11.4.4	<u> </u>	122	1414	<u> </u>		
層	W	Н	K kN/am	Q ₁	δ_1	α_1	Q ₂ IrN	δ_2	α_2	Q_2	δ_3
7	73894	380	82213	7868	0.10	0.52	15727	0.28	0.28	26348	0.74
6	82070	430	86151	16926	0.20	0.39	33822	0.70	0.25	56701	1.77
5	87384	430	100545	21341	0.21	0.38	51189	1.00	0.22	85778	2.54
4	93457	430	111541	28220	0.25	0.34	67673	1.30	0.21	113440	3.22
3	86018	430	123003	33549	0.27	0.31	80482	1.50	0.21	134864	3.63
2	88807	480	134325	38248	0.29	0.33	91731	1.50	0.21	153754	3.66
1	98817	480	186139	42766	0.23	0.37	102612	1.10	0.23	171884	2.76
B 1	140229	550	1899583	97828	0.05	0.43	141828	0.11	0.23	194664	0.54

主 4 捻封酒日及び破垢パラメータ

A 生使的項目及の時期パイプアープ						
検討項目		解析パラメータ				
1.入力地震波の 影響	入力地震波	告示波-乱数(レベル1~3), 告示波-八戸(レベル1~3), 告示波-神戸(レベル1~3), 想定名古屋浅発地震, 想定新東海地震				
2.表層地盤の周 期特性の影響	地点	ARM(名工建設有松総合事務所) CHC(中電火力センタービル), NST(名古屋駅), NUT(名大新月号館), NUT(名大鶴舞キャンパス), OYO(応用地質中部支社), SDB(志段味出張所), SJB(水上出張所), TTB(富田出張所)				
3.上部構造特性 の影響	<u>上部構造の剛性</u> 減衰定数 減衰タイプ	0.5倍, 1.0倍, 2.0倍 1%, 3%, 5%, 10% 剛性比例型,				
	固有周期 等価減衰定数	金エネルキー比例型 <u>3秒</u> , 4秒, 5秒 10%, 20%, 30%				
4.免震層特性の 影響	免震装置の種類	始プラグ入り積層ゴム				

5. 入力地震波

解析には、建設省告示 1461 号の加速度応答スペクトル に適合した模擬地震動(以下告示波)と、愛知県設計用入力 地震動研究協議会で作成された地震動を使用した。告示波 の位相特性は、JMA 神戸 1995NS、Hachinohe1968NS、 ランダム位相とした。項目1では告示波と想定新東海地震、 名古屋浅発地震(名大鶴舞キャンパス地点の地震波)を、項 目2では名古屋9地点での名古屋浅発地震を、項目3、4 では神戸及び八戸位相の告示波(レベル2)を入力波とした。

6. 解析結果

ここでは、検討項目2及び検討項目3の解析結果を示す。 6.1 検討項目2(表層地盤の周期特性の影)

対象建物が図3に示すような名古屋の9地点に建設され た場合を想定し、各地点における想定名古屋浅発直下型地 震を入力波として解析を行った。想定として各地点から約 15km 離れた伏在断層の中心から、横ずれ断層型の地震が 発生した場合を設定する。各地点における地盤の卓越周期 と地形分類を表5に示す。また、解析結果を図4に示す。 加速度、変位ともに CHC、SJB、TTB など地盤の卓越周 期が建物の固有周期4秒に近いか、あるいはそれ以上の周 期の地点において応答が大きくなった。地盤の卓越周期が 1.39秒の OYO 地点や、1.23秒の SDB 地点など解析モデ ルの固有周期から離れている地点では、他の地点に比べ応 答値がかなり小さく抑えられている。地盤分類では、干拓 地など軟弱地盤において応答が大きくなっている。

6.2 検討項目3(上部構造特性の影響)

図5は、上部構造の剛性を0.5倍としたときの固有値解 析によって得たモード形状を示したものである。1次の刺 激関数の値がほぼ1であるのに対し、高次の値は非常に小 さくなっている。一方、図6は免震層を除いた層間変形の 刺激関数をプロットしたものである。下層部では高次に比 ベ1次が大きな値を示しているが、上層部では2次が1次 の値を上回っており、最上階では3次も1次より大きな値 を示している。これにより、層間変形でみると高次の影響 も無視できないことがわかる。

図7は、上部構造の剛性を0.5倍、減衰定数を3%、10%、 減衰タイプを剛性比例型、歪エネルギー比例型とした時の 神戸位相の告示波を入力した場合の解析結果である。減衰 定数の大小によらず、層間変形角、層せん断力係数におい て、剛性比例型減衰の応答が小さく抑えられている。また、 図8に示す上部構造剛性0.5倍、減衰10%時のRF/B1の 伝達関数で比較すると、2次、3次など短周期側において、 剛性比例型減衰の方がかなり値が小さくなっているのがわ かる。これは、歪エネルギー比例型減衰が振動数に依存し ない減衰を与えているのに対し、剛性比例型減衰は1次振 動数によって減衰が決まっているため、高次における減衰 を過大評価してしまっているためだと考えられる。

本論では、免震構造物をモデル化し、各種条件に対して 地震応答解析を行った。それにより、免震建物の応答に建 設地の地盤の周期特性が深く関わっていることが確認され た。そして、一般に免震建物の応答では1次モードが支配 的だと考えられているが、建物の上層部ではむしろ高次モ ードの影響の方が大きいことを示した。また、剛性比例型 減衰は高次における減衰を過大評価しており、正確な減衰 評価が必要だと思われる。