4 層および 10 層鉄筋コンクリート造骨組のモード分析と等価 1 自由度評価 その 1. 保有水平耐力

○正会員 TEP Mesa^{*1}, 同 吉川 拳人^{*2}, 同 姜 在道^{*3}, 同 土佐内 優介^{*4}, 同 長江 拓也^{*5}, 同 梶原 浩一^{*6},
同 福山 國夫^{*7}, 同 壁谷澤 寿海^{*8}, 同 塩原 等^{*9}, 同 壁谷澤 寿一^{*10}

E-ディフェンス実験,1次モード応答,保有水平耐力

1. はじめに

2010年度および2015年度に実施した4層と10層の鉄筋 コンクリート造骨組実験について報告する。試験体を図1 に示す。詳細については文献1,文献2を参照されたい。 10層骨組は基礎固定条件の実験を対象とする。いずれの 骨組も同様の設計方針を採用しており、二次設計,保有 水平耐力の検定において、いずれもFrame方向にDs=0.30, Wall方向にDs=0.35を採用し、必要値と同等の(必要値を わずかに超える)設計条件が意図された。実験データは ASEBI³において公開されている。JMA神戸波100%加振 における各層の層せん断力-層間変形角関係を図2に示す。 ここでは、骨組応答性状を1自由度縮約することで、マク ロな視点から保有水平耐力の設計値と実験値を比較する。

2. 固有振動モードと1自由度縮約

JMA 神戸波 10 %加振, 25 %加振, 50 %加振, 100 %加 振時の実験データより抽出した 1 次, 2 次, 3 次の固有振 動モード形状を図 3 に示す。手法としては,変形分布に 最も近い条件として,一定振動モードの 2 乗累積和を最 小とする抽出手法 %を 1 次, 2 次, 3 次の順で適用した。 図において,加振倍率による顕著な差は見て取れない。

1 自由度縮約の概要については,文献 5 を参照されたい。 1 次モードと 2 次モードの全体質量に対する有効質量の割 合を図 4 に示す。4 層骨組では 2 次モードまでで,概ね全 体質量に達している。10 層骨組では 2 次モードまでで全 体の 90 %に達している。等価高さの全体高さに対する割 合を表 1 に示す。本稿では,1 次モード応答の評価を対象 とする。10 層骨組について,1 自由度縮約後の代表加速度 *ISa*-代表変位 *ISd* 履歴を図 5 に示す。また,基礎位置にお いて記録された加速度波形に基づき,減衰定数 *h*=0.05-0.20 のときの Sa-Sd スペクトルを重ねて示す。Wall 方向と Frame 方向のいずれの方向も履歴のピークが Sa-Sd スペク トルと対応していることが分かる。4 層骨組についても, 同様に履歴のピークが Sa-Sd スペクトルと対応する⁵。

Modal response and SDOF assessment of four-story and ten-story reinforced concrete frames: Part 1. Ultimate Strength Capacity Mesa TEP, Kento YOSHIKAWA, Jae-Do KANG, Yusuke TOSAUCHI, Takuya NAGAE, Koichi KAJIWARA, Kunio FUKUYAMA, Toshimi KABEYASAWA, Hitoshi SHIOHARA, Toshikazu KABEYASAWA

3. 設計に対する保有水平耐力の水準評価

4 層骨組, 10 層骨組の各方向について1次モード応答を 対象に、1 自由度縮約における代表加速度 /Sa -代表変位 JSd 履歴を全ての加振結果について図6に重ねて示す。横 軸は等価高さ」Hで除して全体変形角とした。

ISa に対応する保有水平耐力の水準について、実験値と しては ₁Sa -₁Sd/₁H 履歴の骨格曲線(青の実線)の ₁Sd/₁H =0.008~0.012 rad の区間における平均値を採用することと した。一方,設計値については,Frame 方向,Wall 方向そ れぞれ,設計時の Ds 採用値を参照し,1 次モードの有効 質量割合の逆数を乗じて評価した。図中に保有水平耐力 水準の実験値と設計値を破線で示した。

以上を整理した内容を表2に示す。設計値に対する実験 値の比率を正側と負側に対してそれぞれ求めている。平 均すると, 4 層骨組と 10 層骨組の Frame 方向は, いずれ も 1.53 となった。4 層骨組と 10 層骨組の Wall 方向は、そ れぞれ, 1.71 と 1.79 となった。これらの比について, Wall

表1 全体高さに対する等価高さ割合 [%]

	4層 Frame		4層Wall		10層 Frame		10層 Wall	
	1 st	2nd	1 st	2nd	1 st	2nd	1 st	2nd
JMA神戸波 100%	70.65	-29.58	72.44	-13.19	67.24	-12.35	68.45	-12.68
JMA神戸波 50%	71.37	-22.43	73.68	-5.358	67.54	-12.79	68.4	-11.48
JMA神戸波 25%	71.72	-19.73	74.75	-0.3106	68.82	-3.995	68.94	-6.227
JMA神戸波 10%	71.56	-28.55	75.08	1.374	69.48	-0.2827	69.42	-3.87

方向が Frame 方向に対して、4 層骨組で 1.12 倍、10 層骨 組で1.17倍大きくなった。

引き続き、両試験体に対する実験データ分析を進めて ゆく。各種の数値解析検証に取り組み、保有水平耐力の 定量評価、地震応答評価の精度向上に貢献する。

参考文献

10

- 1) 長江拓也他:4階建て鉄筋コンクリート造建物を対象とした大型振動 台実験, 日本建築学会構造系論文集, 669 号, pp 1961-1970, 2011
- 2) 梶原浩一他: E-ディフェンスを用いた 10 階建て鉄筋コンクリート 造建物 (2015) の三次元震動台実験 その1~5, 日本建築学会大会学術 講演梗概集,構造 II, pp.863-872, 2016
- 3) ASEBI: 防災科学技術研究所ホームページ, https://www.edgrid.jp/
- 4) 滝沢春男:梁崩壊型靱性架構の動的機構形成における定モード成分の 抽出, 構造工学論文集, vol. 36, pp.245-258, 1990
- 5) 松森泰造他:純フレーム構造骨組および連層耐震壁フレーム構造骨組 を有する4 層コンクリート系建物の1 次モード応答評価: E-ディフ ェンス実験 その1~3,日本建築学会大会学術講演梗概集,C-2, pp.581-582, 2013

10

 $[m/s^2]$

Sa

10

m/s²]

Sa

4層Wall

-0.03 -0.02 -0.01 0 0.01 ,*Sd* / ₁*H* [rad]

10層Wall

-0.03 -0.02 -0.01

骨烙曲鷂

0.02 0.01

骨核曲鏡

0.02

実験値 設計値

0 0.01Sd / H [rad]

実験値 設計値

表2保有水平耐力の実験値と計算値の比較

	4層 X(Frame)		4層 Y(Wall)		10層 Y(Frame)		10層 X(Wall)	
	正	負	正	負	Ē	負	正	負
構造特性係数Ds[-]	0.3		0.35		0.3		0.35	
設計値[m/s ²]	3.302		4.401		3.708		4.227	
実験値[m/s ²]	4.665	-5.456	7.424	-6.398	5.124	-6.21	7.646	-7.464
比率[-]	1.41	1.65	1.84	1.58	1.38	1.67	1.81	1.77

*1 飯嶋建築事務所(元名古屋大学学生)

*2 名古屋大学大学院生

-200

10層Frame

-200

10層Wall

Sa [m/s²]

-10 └─ -400

10

-5

-10 -400

 $Sa [m/s^2]$

- *3 ソウル技術研究院 主任研究員・博士 (工学)
- *4 フジタ技術センター 研究員・修士 (工学)
- *5 名古屋大学減災連携研究センター 准教授・博士(工学)
- *6 国立研究開発法人防災科学技術研究所 部門長・博士(工学)
- *7 国立研究開発法人防災科学技術研究所 客員研究員
- *8 東京大学地震研究所 名誉教授·工博
- *9 東京大学大学院工学系研究科 教授・工博
- *10 首都大学東京大学院都市環境科学研究科 准教授・博士(工学)

*1 IIJIMA Structural Design Office

0.02

0.02

- *2 Graduate School, Nagoya University
- *3 Senior Researcher, SIT, Dr. Eng.
- *4 Researcher, Fujita Corporation, M. Eng.
- *5 Assoc. Prof., Nagoya University, Dr. Eng.
- *6 Manager, NIED, Dr. Eng.
- *7 Visiting Researcher, NIED, Dr. Eng.
- *8 Emeritus Prof, ERI, The University of Tokyo, Dr. Eng.
- *9 Professor, The University of Tokyo, Dr. Eng.
- *10 Assoc. Prof., Tokyo Metropolitan University, Dr. Eng.