名古屋大学大学院環境学研究科都市環境学専攻博士前期課程2年 福和研究室 西畑 尚

1. 序論

1995年の兵庫県南部地震による死者の約80%は、戦前の老朽 化した在来軸組構法の被害による圧死であった。一方で、現行設 計基準で設計されたプレハブやツーバイフォー構法の住宅にお いては、ほとんど全壊・半壊の被害はなかった。現行の耐震基準 では、大地震(震度6程度,300-400gal)に対して部分的な被害が あっても人命に被害が生じないように設計されている。兵庫県南 部地震の時には、この想定している地震動レベルを遥かに上回る 地震動レベルの入力があったにも関わらず、プレハブやツーバイ フォーの住宅が倒壊しなかった原因として、設計では考慮されて いなかった ALC 版外壁や間仕切壁、内装材などの非構造部材の 剛性・減衰への影響が大きかったことも考えられる。この地震に よる被害の経験から、建築構造の性能をある程度理解した上で、 高いコストを払っても、より耐震性能の高い建築物を入手しよう とするユーザーの動きが出てきた。

また、1998年の建築基準法改正に伴い、性能規定が導入され、 2000年には品確法が施行された。そのため、技術者が住宅の振動特性を把握し、耐震安全性や振動居住性を確保することはます ます重要となってきた。

そのため、従来、超高層建築物や原子力発電施設などの重要構 造物が主であった振動特性に関する研究が、鉄骨住宅を中心とし た低層住宅についても徐々に行われるようになってきた。しかし、 これらの研究は常時微動といった環境振動レベルでの観測や強 制振動実験及び実大振動台実験といった振動実験に基づくもの で、実際に強震観測を行うことで、実地震動に対する振動特性を 明らかにし、設計の検証や振動実験結果との比較検討を行った研 究はほとんど無いのが現状である。

そこで、本論では、愛知県に建設された実際の鉄骨プレハブ住 宅(NF 邸)を利用して建設段階毎に振動実験を行い、それに基づい て固有振動特性の把握及び非構造部材の影響について考察する。 また、竣工後、継続的に強震観測を行い、実地震動に対する鉄骨 住宅の振動特性を明らかにし、あわせて広範囲なレベルでの振幅

表1 建設段階の推移 単位 (kN) 建設段階 建物概要 総重量 備考 -ム+床板 181 1 鉄骨フレ 外壁取り付け後 R階のみ床モルタル 外壁目地シーリング前 277 一部外壁シーリング 屋根設置後 344 床モルタル充填完了. 4 内装中 577

依存性を検討した。また、東京都に建設された鉄骨プレハブ住宅 (SS 邸)と、同一敷地内に隣接して建っている戦前の在来木造住宅 (SS 邸)において継続的に強震観測を行い、構造種別に着目した地 震応答性状の比較検討を行う。

振動実験と強震観測の分析を通して、水平2方向の近接固有値 による連成うなり振動の励起により、従来使用してきた1自由度 系の減衰評価手法では、減衰定数を過大評価する可能性があるこ とを確認した。そこで本論では、連成うなり振動が生じる2軸剛 性偏心の1質点3自由度系モデルを考え、並進連成振動系を考慮 に入れた減衰評価手法を提案し、応答解析によりその有効性を検 討する。さらに、実際の振動実験データに提案する手法を用いて、 並進連成振動系を考慮に入れた分析を行い、1自由度系の分析方 法による振動実験結果と比較検討を行う。

また、本梗概には記載していないが、強震観測では得ることが できなかった水平上下 IG レベルでの実大振動台実験を行い、強 震動に対する鉄骨住宅の振動特性についても検討を行った。

2. 建物及び振動実験の概要

図1にNF邸の平面図を示す。図中には、センサー(微動計,地 震計)の設置位置も併せて示す。NF邸は2階建ての戸建専用住宅 である。基礎構造は鉄筋コンクリートの連続布基礎である。上部 構造は防錆処理された角柱とH型鋼で構成されており、ブレー ス状の耐震パネルが各所に設置されている。また、基礎と上部構 造はアンカーボルトにより固定されている。さらに、外壁・床に はALC版、内装壁には石膏ボードが用いられている。非構造部 材が建物の固有振動特性に与える影響について検討するため、振 動実験は4回の建設段階に分けて行った。表1に各建設段階の状 況を示す。実験内容は常時微動、起振機を用いた周波数スウィー プ加振実験、自由振動実験であり、動コイル型微動計とサーボ型 加速度計を用いて記録した。これらの実験結果に基づき固有振動 教・減衰定数を評価し振動特性の把握を試みた。また、本論では、 常時微動計測、自由振動実験、強震観測の結果に基づき、建設段 階毎の振動特性の推移及び振幅依存性についても検討する。

SS 邸は同一敷地内に隣接する鉄骨住宅と木造住宅からなる。 図 2 に SS 邸の平面図を示す。図中には、センサー(地震計)の設 置位置も併せて示す。鉄骨住宅は3階建ての戸建専用住宅である。 基礎構造は鋼管杭を27本使用した杭基礎である。上部構造の仕 様は NF 邸と同様である。木造住宅は1942年(昭和17年)に建設 されており、1956年(昭和31年)に現在の場所に移設された建物

である。基礎構造はべた基礎で ある。構造形式は在来軸組工法 で、外壁はモルタル、屋根は瓦 となっている。両建物の建物間 距離は南北方向に約3mである。 本論では、これら2棟の強震観 測結果に基づき構造種別に着 目した地震応答性状の比較検 討を行う。

 3 階平面図
 1 階平面図

 3 階平面図
 1 階平面図

 図 2 SS 邸平面図およびセンサー配置

3. 振動実験と強震観測に基づく固有振動特性

振動実験と実地震動に対する NF 邸の固有振動特性の振幅依存 性について微小な振幅から大振幅までの、広範囲にわたる比較検 討を行う。固有振動数及び減衰定数は以下のように推定する。常 時微動計測から R 階中央の加速度波形に対して RD 法を用いて RD 波形を求め、ゼロクロッシング法と対数減衰率から推定する。 自由振動実験から R 階中央において収録された自由振動波形か ら隣り合う3波区間毎に、ゼロクロッシング法と対数減衰率から 推定する。また、強震観測に基づく固有振動数と減衰定数は、収 録できた38個の地震記録を用いて、1階に対する2階の伝達関 数についてカーブフィット法により推定する。各分析から求めた 固有振動数及び減衰定数を図3に示す。なお、NF邸においては 建物と地盤との相互作用はほとんど無いものとして検討を行う。 この図から、各建設段階で振動性状が大きく変化したことが確認 できる。まず、固有振動数に着目すると、各方向とも第二建設段 階で減少する以外は増加している。この原因は、第二建設段階に おいて、外壁 ALC 版が上部のみピン接合され、シーリングもさ れていなかったため剛性への寄与が小さく、重量増加の影響が勝 ったためと考えられる。また、両方向とも第四建設段階で大幅に 剛性が増加し、鉄骨フレーム時と比較して剛性が6倍程度増大し ていることが分かる。これは、内外装の非構造部材、特に内装用 石膏ボードが建物全体の剛性に対して大きく寄与したと考えら える。減衰定数についても各方向とも第二建設段階で減少する以 外は増加している。

次に、固有振動特性の振幅依存性について検討する。固有振動 数に関しては大振幅になるに従って減少することが分かる。一方、 減衰定数は小振幅では変化が大きく、ある振幅以上では安定して 振幅と共に増加する傾向がある。微小振幅レベルでの減衰の急激 な変動は連成うなり振動が原因で、それについては後述する。ま た、振動実験と強震観測に基づく固有振動数の推定値はよく対応 しており、振幅レベルの増加に伴う低振動数化が表れていること が確認できる。減衰定数についていも概ね対応している。このよ うに建物の振動性状には振幅依存性が存在するため、固有振動 数・減衰定数の正確な評価には振幅レベルを考慮する必要がある。

4. 構造種別による地震応答性状の比較

図4にSS 邸の鉄骨住宅と木造住宅それぞれについて、宮城県 沖(2003年5月26日)で発生した地震のEW方向の加速度波形と フーリエスペクトルを示す。図5には地盤に対する鉄骨住宅3階 の伝達関数と、地盤に対する木造住宅2階の伝達関数を示す。継 続時間が長い記録で、フーリエスペクトルを見ると長周期側と鉄 骨住宅の固有振動数付近が卓越していることがわかる。鉄骨住宅 において、EW方向で建物の固有振動数と地盤の振動数がほぼ一 致しており建物とよく共振している。一方木造住宅においては、 固有振動数から外れているため増幅していない。また、図4、5 より、鉄骨住宅は減衰が小さく、揺れがなかなか収まらないこと がわかる。一方、木造住宅は鉄骨住宅に比べ減衰が非常に大きい ため、揺れがすぐに収まることがわかる。さらに、図5より、鉄 骨住宅においては水平2方向の固有振動数の近接しており、連成 うなり振動のため明確なピークを捉える事ができず、減衰定数を 精度よく評価できない。これについては後述する。

次に、SS 邸において収録できた各地震波の伝達関数に対して2 入力1 自由度系のカーブフィット法から固有振動数と減衰定数 を推定し、各建物の最大相対変位との関係を求めた結果を図6に 示す。鉄骨住宅は木造住宅と比較して、全体的に振幅が大きいこ とがわかる。また、木造住宅は固有振動数と減衰定数の振幅依存 性が強いことがわかる。これらの原因は部材の接合に金物等を使 用しており、鉄骨造のボルト接合と比較して、剛性が小さく摩擦 による減衰が大きいことが関係していると考えられる。このよう に構造種別の違いにより、同じ地震動が入力しても応答性状、固 有振動特性にかなり相違がある。

5. 並進連成うなり振動を考慮した減衰推定手法

図7に示す並進連成うなり振動が生じる2軸剛性偏心の1質点 3 自由度系モデルを用いて、2 方向の固有値が近接する並進連成 うなり振動を考慮に入れた減衰評価手法を提案し、応答解析によ りその有効性を検討する。

連成振動系の運動方程式(1)をラプラス変換手法によって、並進 連成振動系の動的応答倍率を導くと式(2)になる。式(2)より、並 進連成振動系の動的応答倍率は、重み(C_k / λ_k^2)を考慮した各方向 の共振曲線を重ね合わせたものとなっていることがわかる。

$$\begin{bmatrix} m & 0 & me_y \\ 0 & m & me_x \\ me_y & me_x & m(e_x^2 + e_y^2) + I \end{bmatrix} \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{pmatrix} + \begin{bmatrix} C_x & 0 & 0 \\ 0 & C_y & 0 \\ 0 & 0 & C_{z\theta} \end{bmatrix} \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{pmatrix} + \begin{bmatrix} k_x & 0 & 0 \\ 0 & 0 & k_{z\theta} \end{bmatrix} \begin{pmatrix} x \\ y \\ \theta \end{bmatrix} = \begin{cases} 1 \\ 0 \\ e_y \end{bmatrix} f_y \cdots (1)$$

$$m: \begin{tabular}{l} m: \begin{tabula$$

(1)伝達関数曲線適合法

並進連成振動系の水平 2 方向の各減衰定数を正確に推定する 方法としては、式(2)の動的応答倍率をフィッティング関数とし、 観測記録から求めた伝達関数に対して非線形最小2乗法を用い、 繰り返し計算を行うことで各減衰定数を推定する方法がある。 ただし、k=1,2,3において

 $\frac{C_k}{c^2} = c_k$ (Const.)と置換すると、パラメータは λ_{i}^{2}

の計9個である。 $h_1, h_2, h_3, \omega_1, \omega_2, \omega_3, c_1, c_2, c_3$ h_i:k次の減衰定数,ω_i:k次の固有円振動数,c_i:k次の重み (2)2 自由度 RD 法

連成振動系にも対応できる手法として、連成うなり振動が現れ た自由振動波形、或いはRD波形を2つの1自由度系の自由振動 波形に分解できると仮定し、式(3)の2自由度系の自由振動をフィ ッティング関数とし、波形に対して同様に繰り返し計算を行い、 各減衰定数を推定する方法がある。

計測種別	分析種別	■ 連成振動考慮
常時微動	伝達関数	① 3自由度系カーブフィット
	伝達関数	② ピーク振動数+1/2h法
	伝達関数	③ 位相差+位相勾配法
	伝達関数	④ 1自由度系カーブフィット
	パワースペクトル	⑤ ピーク振動数+ハーフパワー法
	RD波形	⑥ 2自由度系カーブフィット
	RD波形	⑦ ゼロクロッシング法+対数減衰率
強制加振	共振曲線	⑧ ピーク振動数+1/√2法
	共振曲線	⑨ 1自由度系カーブフィット
	自由振動波形	⑩ 2自由度系カーブフィット
	自由振動波形	⑪ ゼロクロッシング法+対数減衰率

x:フィッティング関数 x₄: k次の自由振動波形 x_{0k}: k次の自由振動波形の初期値 h_k: k次の減衰定数 $\omega_{\iota}:k$ 次の固有円振動数 $\phi_{\iota}:k$ 次の初期位相 t:時間 パラメータは $x_{01}, x_{02}, h_1, h_2, \omega_1, \omega_2, \phi_1, \phi_2$ の計8個である。 6. モデルの応答による減衰推定手法の検討

5 で示した2 通りの減衰推定手法により、連成振動系の正確な 減衰定数が推定可能か検討をするため、まず、モデル応答に表2 に示す各手法を適用し、以下に示すような検討を行った。図7の モデルにおいて、表3に示す各パラメータの条件を与え、x、y 方向に実際に NF 邸で収録した常時微動波形(第四建設段階、300 秒)を入力し応答解析を行った。応答解析を行うことで、並進連 成振動を考慮したパラメータ評価法の有効性について検討をし た。図8に各方向のRD波形および伝達関数(x方向応答/x方向入 カ、y方向応答/y方向入力)とそれらに対して求めた各カーブフィ (2) ット曲線を併せて示す。表4、5には各分析方法により推定した 固有振動数と減衰定数を示す。伝達関数は Parzen ウィンドウ (0.05Hz)をかけることで平滑化されている。図・表より、①は2方 向入力に対応していないが、推定値は固有振動数で2%以内、減 衰定数は4%以内の誤差で推定できている。また、常時微動を入

力した場合、ノイズ成分を多く 含んでおり⑥の分析方法では 推定の精度がやや落ちている。 推定値は固有振動数で 3%以内、 減衰定数は 8%以内の誤差で推 定できている。一方、連成振動

₹.	3	モデルのパラン	メーター
----	---	---------	------

方向 パラメータ	x方向	y方向	θ方向
固有振動数(Hz)	4.800	4.500	6.400
減衰定数(%)	2.000	1.000	2.000
偏心距離(m)	0.828	0.828	-
質量(t)		5.313	
回転慣性(t・m ²)	52.162		

表4 固有振動数比較

Ī

 連成振動考慮	x 方向	y方向	
分析種別	固有振動数(Hz)	固有振動数(Hz)	
①3自由度系伝達関数カーブフィット	4.648 (4.758)	4.567 (4.608)	
②伝達関数ピーク振動数	4.683	4.383	
④1自由度系伝達関数カーブフィット	4.630	4.372	
⑥2自由度系RD波形カーブフィット	4.638	4.363	
⑦RD波形ゼロクロッシング法	4.277	4.331	

図8RD 波形・伝達関数・カーブフィット曲線

系を考慮していない1自由度系の分析方法では、減衰定数を過大 評価しており、さらに、推定値にばらつきが大きいため、信頼性 にかける。

従って、常時微動を入力とした場合についても従来の1自由度 系の減衰定数推定手法と比較して、固有振動数が近接する並進連 成振動系の振動に対しては、①、⑥の分析方法から減衰定数を推 定することは有効と考えられる。

7. 常時微動記録に基づく分析

NF 邸において、水平2方向の固有振動数が互いに近接し、連 成うなり振動が励起された常時微動(第一建設段階)について、並 進連成振動系を考慮に入れた分析を行う。各方向の RD 波形及び 常時微動から求めた伝達関数と、それに対するカーブフィット曲 線を図9に示す。表6に各分析方法より求めた固有振動数と減衰 定数を示す。

図9より、①、⑥の方法ともによくフィッティングできている ことがわかる。また、表6、7より、数値的には①、⑥の推定値 にやや差があるが、その原因としては、⑥の2自由度系RD波形 カーブフィット法では捩れを考慮していないことなどが挙げら れる。また、固有振動数については、1自由度系の分析方法でも 推定値に差はほとんどないが、減衰定数については連成振動系を 考慮した①、⑥の分析方法の方が安定した推定ができていると考 えられる。

8. 分析方法が評価値に与える影響

6、7より、水平2方向の固有振動数が近接する連成振動系に 対しては、従来の1自由度系の減衰定数推定手法と比較して、①

図9 常時微動記録に基づく分析結果 表6 因有振動数比較

X C EIIIX S X CIX			
連成振動考慮	EW方向	NS方向	
分析種別	固有振動数(Hz)	固有振動数(Hz)	
①3自由度系伝達関数カーブフィット	4.860	4.825	
②伝達関数ピーク振動数	4.860	4.810	
③伝達関数位相差	4.872	4.873	
④1自由度系伝達関数カーブフィット	4.870	4.871	
⑤パワースペクトルピーク振動数	4.860	4.790	
⑥2自由度系RD波形カーブフィット	4.951	4.783	
⑦自由振動ゼロクロッシング法	4.832	4.802	

表7 减衰定数比較

云, 成			
連成振動考慮	EW方向	NS方向	
分析種別	減衰定数(%)	減衰定数(%)	
①3自由度系伝達関数カーブフィット	0.491	1.017	
②伝達関数1/2h法	0.500	0.776	
③伝達関数位相勾配法	1.083	0.855	
④1自由度系伝達関数カーブフィット	0.524	0.786	
⑤パワースペクトルハーフパワー法	1.596	2.255	
⑥2自由度系RD波形カーブフィット	0.432	0.721	
⑦自由振動対数減衰率	1.289	1.273	

の3自由度系カーブフィット法及び⑥の2自由度系カーブフィッ ト法から減衰定数を推定することは有効であることがわかった。 ここでは、NF 邸の常時微動記録と強制加振実験記録に基づき、 従来の1自由度系の推定手法と並進連成振動系を考慮にいれた 推定手法を用いて固有振動数及び減衰定数を推定し、分析方法の 違いによる固有振動数と減衰定数の差について述べる。図10、 図11に実験方法・分析方法別の固有振動数・減衰定数の差異を 建設段階ごとに示す。

図 10、11 より、固有振動数の推定値は連成振動の考慮の有無 に関わらず、安定した値が得ることができていることがわかる。 減衰定数については、連成振動を考慮した分析方法による推定値 は安定した値を得ることができているのに対して、連成振動を考 慮していない従来の 1 自由度系の分析方法による推定値は大き なばらつきを示していることがわかる。また、第二建設段階と第 三建設段階の NS 方向において、3 自由度系伝達関数カーブフィ ット法と2 自由度系 RD 波形カーブフィット法の推定値に差があ る原因は、水平2 方向の固有振動数と捩れの固有振動数が非常に 近接しており、捩れを考慮していない2 自由度系 RD 波形カーブ フィット法では、捩れ成分も含んだ RD 波形に対してフィッティ ングしきれなかったためと考えられる。

9. 結論

本論では、振動実験と強震観測に基づき鉄骨住宅の振動性状に ついて明らかにした。また、水平2方向の固有振動数の近接によ る連成うなり振動が励起された場合における減衰定数の評価に ついて検討をした。以下に得られた知見を示す。(1)非構造部材 の剛性・減衰への寄与は非常に大きいため、非構造部材を考慮に 入れた設計が今後必要とされる。(2)振動実験と強震観測に基づ く固有振動特性の振幅依存性はよく対応しており、振動実験から 簡易的に地震動に対する大振幅レベルの固有振動特性を予測で きる可能性がある。(3)連成うなり振動が励起された場合でも、連 成振動を考慮した減衰推定を行えば、安定した固有振動特性の推 定が可能となる。従って、今後建物の耐震安全性を高めるために は、事前に振動実験・強震観測を行うことで振動性状を正確に把 握した上で設計することが重要である。また、水平2方向の固有 振動数の近接する場合には、特に減衰の正確な推定の為に連成振 動を考慮に入れた分析を行う必要がある。

