振動台実験に基づく実大免震住宅の応答性状に関する研究

名古屋大学工学部社会環境工学科建築学コース

宇津野 将司

1. はじめに

兵庫県南部地震以後、住宅に対する耐震性への関心が高 まった。1998年6月に建築基準法が改正され、2000年10 月の免震構造関連告示により、一定条件のもとで、一般建 物と同様に、通常手続きで免震建物を建てることができる ようになった。しかし、既存の免震部材である積層ゴムは 一般住宅のような軽量建物には向かず、ざまざまな住宅向 け免震部材が新たに開発・実用化されている。

免震建物の特性は各メーカーごと個別に実験はされて いるが、同一条件での比較実験はされていない。そこで本 研究では、共通の上部構造物を使い免震層のみを取り替え た実大振動台実験を行うことにより、住宅向け免震装置の 特性比較を行う。本梗概では、紙面の都合から主に、重量 偏心の有無による応答性状の差異についての検討結果を 示す。

2. 実験概要

2.1 試験体概要

試験体としては、振動台に緊結した重量鉄骨架台を基礎 と見立てその上に免震層、2階建の上部構造物を配置した。 上部構造物は耐力パネル形式の軽量鉄骨系軸組構造で、外 壁と床は ALC 版、内壁間仕切りは木下地に石こうボード をビス止めし、クロス仕上げしてある。試験体概要を図1 に示す。後述する3種類の免震装置を交換して実験を行っ た。

図1 試験体概要

福和研究室 表1 装置組み合わせ

2.2 免震層概要

免震装置の概要を表 1 に示す。装置 A は平面転がり支 承に積層ゴムとダンパーを組み合わせたものである。装置 B は周辺にすり鉢転がり支承と中央部にねじれ防止の平 面転がり支承、全方位対応のダンパーと風揺れ固定を組み 合わせたものである。装置 C は平面すべり支承に復元ゴ ムと大変位抑制のためのストッパーを組み合わせたもの である。

2.3 振動台・計測器概要

振動台は3方向同時加振可能で最大積載重量50tのもの を用いた。その性能は最大加速度1000~3000cm/s²、最大 速度100~200cm/s、最大変位±20~60cm、加振振動数は 最大50Hz である。

図 2 に計測器配置図を示す。変位はレーザー式変位計 (分解能 0.01 ~ 0.05mm、サンプリング 1/1000 秒) 加速度 はひずみゲージ式加速度計(有効レンジ 0.001 ~ 5G)を用 いた。

2.4 入力地震動

入力地震動は ELCentro (1940、50kine 基準化)、Kobe 原波(1995)の2種類で後述する通常の積載荷重時と偏心 させた積載荷重時の2つの状態で加振を行った。ここでは X軸方向加振の結果のみを用いている。

2.5 積載荷重配置

積載荷重として1階、2階におもりを乗せている。その うち1階のおもりを1つに集めることによって免震層荷重 偏心のあるケースを設置した。積載荷重配置概略図を図3 に、免震層変位250mm時の等価剛性より求めた装置別方 向別偏心率を表2に示す。

表2 偏心率算定(原点は下図の左隅)

	呼称	方向	重心(m)		剛心(m)		偏心率(%)	
			通常荷重	偏心荷重	通常荷重	偏心荷重	通常荷重	偏心荷重
	装置A	X軸	3.470	3.460	3.490	3.489	0.044	0.082
		Y軸	3.175	3.079	3.285	3.284	0.008	0.012
	装置B	X軸	3.500	3.489	3.572	3.568	0.109	0.132
		Y軸	3.145	3.033	3.420	3.368	0.028	0.031
	装置C	X軸	3.470	3.460	3.396	3.392	0.044	0.067
		Y軸	3.175	3.079	3.292	3.258	0.028	0.026

動かした荷重/上部構造重量(積載荷重及び梁自重含む)=8.3%

図 3 積載荷重配置概略図

3. 荷重偏心による応答性状比較

偏心による免震層・上部構造の応答最大値への影響と免 震層のねじれ・並進成分への影響をみる。

3.1 応答最大値の比較

荷重偏心させた時の各層におけるX方向加振時のY方 向の架台に対する最大相対変位応答を図4の左列に示す。 全装置共に上部構造の層間変位は偏心前後で変化は小さ く、免震性能は得られている。加振直行方向の応答よりね じれの応答を考察できる。免震層変位は偏心率の小さい装 置 A が最も小さく、偏心後の変化も少ない。ダンパーが 平面端部の変位を抑えるように配置されているためと思 われる。同じ程度の偏心率である装置 C はすべり支承が 鉛直荷重の変化に左右されやすいためか東側・西側共に偏 心による影響が見られる。装置 B は中央にダンパーを持 つ構造のためねじれ抵抗が小さく、ねじれ応答の結果生じ るY軸の応答が大きくなった。

3.2 スペクトルの比較

1 階のY方向東西両端で測定されたY方向加速度応答 の差に1/2をかけたものをねじれ成分のフーリエスペクト ルとし、北側・南側両端で計測されたX方向(加振方向) の加速度応答のフーリエスペクトルを図4の中・右列に示 す。ねじれのピークに注目すると最もねじれの大きい装置 Bは偏心前は1.8Hz付近にピークがあり、また偏心後は1 秒付近で、荷重偏心させたことによりねじれの振動数特性 が変わっている。しかしながら、他の装置同様に免震層設 定周期である3秒付近ではねじれの成分は並進成分に比 べて極小さくなっているが、この範囲にでも偏心後の方が ねじれは大きい。装置 B のねじれ成分に明確な周期特性 が見られるのはすり鉢の勾配による周期が関係している と思われる。以上のようなねじれ特性を応答解析により詳 細に検討すべきである。

4. 結論

戸立て住宅のように、部屋の使い方の変化が激しい建物 では、重量偏心が発生しやすいので、偏心時の応答性状の 変化が大きい装置は、不利であると考えられる。本梗概の 結果、ねじれ防止部材の配置、減衰性能を持つ部材の均等 配置することがねじれ防止につながると思われる。ねじれ による影響は確認されたことにより、今後より詳細なねじ れに関する検討をしていくべきと考えられる。

図4 最大応答値とねじれ・並進フーリエスペクトル