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A STUDY ON LATERAL DASHPOTS FOR SOIL-STRUCTURE
INTERACTION AND ITS APPLICATION TO
' A SIMPLIFIED TECHNIQUE

Nosuo Fukuwa? and Suoicur Naxari!

ABSTRACT

‘The dynamic characteristics of embedded rigid foundations are studied using the boundary
element method. Lateral dashpots are introduced to the soil in plane strain in order to
represent the wave propagation toward the third direction from a slice of the soil and their
effects are examined. The impedance functions and foundation input motions are presented
for the case of a rigid foundation embedded in a half-space or a stratum and for the case
of two rigid foundations also embedded in a half-space. The effect of the lateral dashpots
on the soil-structure interaction is studied where the embedment, the bedrock and the
adjacent foundation are considered. The numerical examples are provided by comparing the
results obtained by two-dimensional, approximate three-dimensional and exact three-dimen-
sional analyses. The efficiency of the dashpots is confirmed, in particular, for a foundation
embedded in a half-space. Based on this result, the lateral dashpots are introduced to one-
dimensional soil columns which represent a half-space around an embedded foundation. From
this assumption, the impedance functions are easily obtained in an explicit form and the
foundation input motions are evaluated using the substructure technique. The validity of
this simplified technique is confirmed by comparing its results with those obtained by a three-
dimensional boundary element analysis. :

Key words : damping, dynamic, earthquake, foundation, vibration, viscoelasticity, wave
propagation (IGC : E 8/E 12) '

al. (1974), Jakub (1977) and Kausel et al.

INTRODUCTION

Dynamic soil-structure interaction analyses
are often carried out with the aid of two-
dimensional (2-D) representation due to large
efforts involved in a realistic three-dimen-
sional (3vyD) modeling. However, Luco et

(1974) have shown the difficulty of obtaining
a good approximate solution by a 2-D analysis
compared with the exact 3-D one. It has
been pointed out that the imaginary part of
impedance function in the 2-D modeling
agrees well with that in the 3-D modeling
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however the real part is underestimated in
the 2-D approximation. Consequently,
damping is overestimated in the 2-D model-
ing and it gives an unconservative results.
From this point of view, a method of ap-
proximate three-dimensional (approx. 3-D)
analysis was proposed by Hwang et al. (1975)
and applied to program FLUSH by Lysmer
et al. (1975). In this analysis method, the
3-D effect is introduced by adding the lateral
dashpots in order to account for shear wave
propagation toward the third direction. In
spite of the wide usage of these dashpots in
dynamic response analyses, their effects on
the soil-structure interaction have not been
discussed in detail.

On the soil structure interaction, numer-
ous works
work (1904). The state-of-the-art in this
field was well documented by Gazetas (1983).
The introduction of the previous works on

the soil structure interaction, therefore, are

not presented here.

In this paper, the effect of viscous forces
introduced by Hwang et al. (1975) on
the soil-structure interaction is examined
through the impedance functions and founda-
tion input motions of rigid foundations which
are embedded in a homogeneous elastic half-
space and a stratum overlying a rigid rock.
First the Green’s function for this problem
is derived, then this Green’s function is
applied to the boundary element formulation
in conjunction with the substructure tech-
nique. The effect of the dashpots on the
soil-strucure interaction problem including
the embedment, underlying bedrock and
adjacent foundation are examined by compar-
ing the results obtained by 2-D, approx.3-D
and exact 3-D analyses. In order to confirm
the characteristics of wave propagation, the
energy transmission from a line source is
compared among the above mentioned three
different methods. From this result, the
efficiency of the dashpots for a problem of
a rigid foundation in a half-space is recogniz-
ed. These features of the approximate
three-dimensional analysis have been demon-
strated in the previous papers (Nakai and

have been done since Lamb’s '

Freefield

Fig. 1. Model for approximate three-
dimensional boundary element
analysis

Fukuwa, 1984, 1987).

A simplified technique evaluating the im-
pedance functions and foundation input mo-
tions is proposed by applying the dashpots to
soil columns which represent half-spaces
around a foundation. The proposed method
does not require any empirical insights
which are often needed in existing simplified
procedures. The present method can be
applied to evaluate the foundation input mo-
tions as well as the impedance functions of
embedded foundations. The simplified im-
pedance formulation was first proposed by
Lysmer (1965) in which the vertical impe-
dance function can be represented by a
single-degree-of-freedom mass-spring-dashpot
model. Richart et al. (1970) also demon-
strated a similar approximation for all four
vibration modes. Meek and Veletsos (1974)
improved this concept by introducing a fic-
tious mass connected to a foundation through
a dashpot. Wolf and Somaini (1986) ex-
tended Meek and Veletsos’s work to the
embedded foundations. These simplified
techniques are limited to evaluating the im-
pedance functions and are derived from the
semi-empirical procedure in which simplified
solutions are fitted to the exact one.

APPROXIMATE THREE-DIMENSIONAL
BOUNDARY ELEMENT ANALYSIS FOR
EMBEDDED RIGID FOUNDATIONS
Model and Method of Analysis

In order to study the effect of lateral dashpots
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on the soil-structure interaction, the dyna-
mic characteristics of embedded foundations
subjected to SV waves are investigated using
the boundary element method combined with
the substructure technique. A soil-founda-
tion model illustrated in Fig.1 is considered
in this section. The rigid foundation whose
area is 2 Bx L is embedded with depth E in
a slice of soil with thickness L. The lateral
dashpots are added to the soil slice in order
to represent a 3-D effect in wave propagation.
A stratum with depth H as well as a half-
space are selected to examine the influence
of the underlying bedrock. Besides the single
foundation case, a case of two foundations
with distance D is considered to study the
effect of the structure-soil-structure interac-
tion.

The viscous damping coefficient is intro-
duced to the equation of motion for the
scattering wave field in order to represent
the dashpots. Using the time dependence
of e**!, the displacement vector u® satisfies
the following equation :

QA+ VV -us+ pVus + pw’us —iwpus =0,

33
where p is the mass density of the ground,
4 and g are the complex Lamé’s constants
considering the hysteretic damping Ay, V is
the vector differential operator, and the
superscript S stands for the scattering wave
field.  The viscous damping coefficient 7,
which is related to dashpots, is defined by

=2 ve=(12D ()

where Vg is the absolute value of the complex
- shear wave velocity and the factor 2 in the
first equation arises from the two faces of
the model.

On the other hand, the equation of motion
for the incident and reflected wave field is
written as follows :

QA+ VV-ul+ pVul+ pw’u’ =0, £3)
where the superscript I denotes the incident
and reflected wave field. In this equation,
it must be pointed out that the damping
term does not exist because the dashpots
are effective only for the radiation toward

the third direction from the slice of soil.

For the boundary element analysis, appro-
priate fundamental solutions are necessary.
In order to avoid the additional boundary
element discretization except for the soil-
foundation interface, the Green’s functions
are derived here for a homogeneou shalf-
space and a stratum overlying a rigid rock.
The fundamental solution m,= (up, wg),
which corresponds to the Green’s function
for an infinite domain, can be obtained by
solving an equation :

Q@+ VYV -up+pViupr+ po®up—ionuy+£9,
=0, (4)

where §; is the Dirac delta function, f=(p,
g) is the point source vector, and the sub-
sctipt F denotes the Green's function for a
full-space. Eq.(4) can be solved by taking
Fourier transforms with respect to z- and
z-coordinates. The resultant displacement is
written as follows (Love, 1927) :

; 02
ur(5,2) =gz { e Ho® (hr)
0? 0?
+ g He® ) [ p+ 50

X {Ho® (hr) — H,® <kr>}],

wp (@, ) =] {HL® (hr)— H,® )} p

% (0
+ 9wz {az=
+ o HO G} |

H,f )(hr)

7

(5)

in which H,® is the Hankel function of the
second kind of order zero and

k= (wlcp)—iw|dp, k=(w|cs)?—iw]ds,

cr'=(A+2 w]p, cs*=plp,

de=QA+2 )|y, ds=ply, r*=z2+2,

a=E2—h2, pr=g2—

(6)

Considering the boundary condition at a free
surface and a rigid rock, the Green’s function
is obtained by applying the Fourier transform

with respect to x-direction using the funda-
mental solution above mentioned. The Green’s
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function for a half-space is written as

—_— 1 o E COSEx 2__ b2\ p—az
EsmEm

n-F (E) ( 252 —aZ
+ (28— et r',]ds +up(2+f, 2)
+ Z{F (x _.f’ Z) ’

aa 1 . E Sin Ex 2 —az

=), | P (@E e

E%2cosfx

B (S
+ (28— E) et T’z]d5+wp @+f,2)

+wp(x-—f, Z), /
(7)

—2afet)a’ ,+q

—28% Yo’ ,+q (—2aPe*

where f is the depth of a source and
0'=QE&—k)e ' —2ape ¥,
o' =2afel — (2 £1— k) e M, } Y
and the Rayleigh functlon Fy(&) for the
half-space is

Fu($)=Q & -2 —4apt: . (9)
Considering a rigid rock, the Green’s func-
tion is obtained as follows :

u=— 27z',uf @ [pcoséx{i&(Ax'+Cy")

+B8(By'—Da")} +igsinéx {i§ (Ay' +Cy")
+B8(By'—Dy")} 1dé+up(x+f,2)
+up (x'—.f! Z),

271’#]_[ Tl [ipsinéx{a(Ag'—Cy")

—i§(Bg'+Dyg")} +gcoséx{a(Ay'—Cyh)

—i§(By'+Dy/)} 1dé +wr (x+f, 2)

+wF (x-fs z)’ /
10)

in which integration constants Az~Dj and
Ay~D, are obtained by solving

-k
2FR(8)
28 —p? —2iPBE 282 —p? 2iBE
—2iafé —28°+F 2iaf —28&% k2
i Be-pH iEenH Be-PH
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Aeraz Avleaz UH/ 0

X . -
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DH’e_‘g" DV'e"ﬂ‘ w_H’ wV,

where
Z}az {B(e~(H—f)ﬂ+e H-NF) )
52( (H+1) H+1)
e a+e—( + 1)}’
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wH/:__ZZE e~ H-Na_ p~(H-1B

+e—(H+f)¢_e_(H+f)p} 5
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Ty =— sz {2aBer — (282 —Fk2)e~t7}, )

and the Rayleigh function for this problem
is

Fr(§) =8aPE? (262 —F%) + (§2—aB)

X {(26*—F*)*—4 €% cosh(a+B) H

—(£%+ap) (26* -k +4apE?)

X cosh(a—p)H. (12)
The expression for the traction which is
not presented here is easily obtained from
displacements using the constitutive relation.
The difference whether dashpots are consi-
dered or not exists only in the complex wave
numbers 4 and k.

Considering a train of plane SV waves
propagating in the z-z plane, the solutions
for the incident wave field are easily obta-
ined. In this procedure, the conventional
method by Ewing et al. (1957) is employed
in terms of potentials that satisfy Eq. (3).

The boundary element equation for the
scattering wave field is obtained by applying
the method of weighted residuals. The
displacement vector u; of point i at boundary
I' can be expressed in terms of boundary
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values (Brebbia, 1980) :

Cz'uts+j;p(k)*-ude=ﬁu(k)*-psdP,

13)
in which C; is the coefficient matrix depend-
ing on the geometry of boundary, u* and p*
are the displacement and traction vectors
corresponding to the weighting field. u* and
D* correspond to the fundamental solutions
satisfying the equation of motion Eq.(4)
and those are already obtained as Egs. (5),
(7) and (10). uS and pS are the boundary
values of the displacement and traction,
respectively, and the subscript(k) denotes
the dimension of space under consideration.
As mentioned above, the usage of the
Green’s function which satisfies the boundary
condition enables us to perform the integra-
tion in Eq. (13) only along the soil-founda-
tion interface.

The total displacement and traction consist
of the values in the scattering wave field
and those in the incident and reflected wave
field : :
p=p5+p’. ey
Eq. (13) is discretized on the assumption of
constant variation of displacements and trac-
tions over each boundary element as fol-
lows :

Hgy-u=Gw p+He) - u'—Ge)-p?, (15)

in which

Hyym= 5uCz+j; p w*dl’,

u=u®+ul,

(16)
sz(k)=ﬁ_u(k)*dpy

where the coefficient matrix C; is evaluated
from the sum of all the off-diagonal coef-
ficients of H matrix for the static problem,
since the singularity is the same in the static
and dynamic cases.

Consider the rigid massless foundations
embedded in the soil as shown in Fig.1.
The compatibility of displacements on the
contact area of a rigid foundation can be
expressed by

u=T uf, an
where uf is the displacement vector at the

centroid of the bottom of foundation. 7 is
the transformation matrix which represents
the relationship between the reduced displa-
cements and the nodal displacements along
the boundary. Introducing the diagonal
matrix A which includes the area of each
element, Eq. (15) can be rewritten by mul-
tiplying T%-A-G~! to the both sides of the
equation :

K-ur=fE4f>, (18)
where
K=T'A-Gu '-Hp T,
SJE=T'A-p, a9

fP=T"A-(Gn ' Hp) u'—p?),
in which K is the impedance matrix of
fundations, fZ is the external force vector
and f? is the driving force vector. The
foundation input motion vector, which cor-
responds to the response of a rigid massless
foundation subjected to a seismic wave, is
derived by substituting fZ=0 into Eq. (18).

For the approx. 3-D analysis, dashpot terms
which represent the radiation to the third
direction directly from the side walls of the
foundations must be added when calculating
impedance matrices and driving force vectors
based on Eq. (19).

It is worthy of note that the expression
of driving force in Eq. (19) differs from that
of the conventional boundary element formu-
lation, because the damping terms are added
only for the scattering wave field as shown
in Eq. (1) in the case of approx. 3-D an-
alysis. The discretized boundary integral
equation in the incident and reflected wave
field is written as

He b or 3-0)'U'=G 5_p o 3_p) P +u’. (20)
Substituting Eq. (20) into Eq. (19), the driv-
ing force vector is expressed by

FP=T"A-(Guw " -Hp) 8" —G 3_p or 5-;) !

XH_p or 3-p) W +G (5_p or 5-p) - UL).

21)
Since the dimension of the scattered wave
field (k&) is identical with that of the in-
cident and reflected wave field in case of 2-D
or 3-D analysis, the first and second terms
in the parenthesis of the right-hand side of
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Fig. 2. Two-dimensional

compliance function

Eq.(21) are cancelled out each other and then,

=T A -G u, 22)
which is the familiar expression for the
driving force. When considering the viscous
dashpots for approx. 3-D analysis, however,
the driving force must be expressed by Eq.
19). '

To verify the procedure presented above,
the compliance function is compared with the
result presented by Luco et al. (1972) in
case of a surface foundation on a half-plane
which has no viscous and hysteretic damping.
Fig.2 is a plot of the normalized compliance
function for the horizontal translation for
Poisson’s ratio of 0.25. This figure clearly
exhibits validity of the present method.

Numerical Results and Discussion

The effect of the dashpots on the soil-
structure interaction problem including the
embedment, underlying bedrock and adjacent
foundation are examined by comparing the

results obtained by 2-D, approx. 3-D and
exact 3-D analyses. The 3-D solutions are
derived from the results for rectangular

foundations embedded in a half-space ob-
tained by Yoshida and Kawase (1986) based
on the boundary element method, and the
results for a cylindrical foundation embedded
in a stratum obtained by Fukuwa et al.
(1984) based on the axisymmetric finite
element method.

The square rigid foundation (L=2 B)

embedded with depth E=B/2 in a half-space,
and Poisson’s ratio of 0.4 is considered.
Fig.3 shows the dependency of normalized
impedance function on the nondimensional
frequency a, (=wB|Vs) while Fig. 4 provides
the foundation input motion due to a verti-
cally incident SV wave in the form of
transfer function. It is found from these
figures that the existence of viscous dashpots
exerts a significant influence on the dynamic
characteristics of a rigid foundation. The
real part of the impedance function moves
upward and approaches to that of exact 3-D
solutions. @ The imaginary part also ap-
proaches to that of 3-D solutions except for
the rocking impedance. @ This phenomenon
in the imaginary part is mainly due to the
dashpots added to the side walls of a founda-
tion. Consequently, the equivalent damping
ratio, which is half the ratio of the im-
aginary part to the real part, decreases and
approaches to 3-D one. As an example, the
equivalent damping ratio of the horizontal
impedance is presented in Fig.3 (e). There
is a tendency that the real part is underes-
timated while the imaginary part is overesti-
mated in the low frequency range particularly
for the rotational mode. This implies that
unconservative response is expected when the
rotational response is dominant. For the
foundation input motion, the viscous dash-
pots similarly enable 2-D solution to approach
3-D one. As a whole, it can be noted that
the viscous dashpots produces their desired
effects both on the impedance function and
on the foundation input motion.

Next, the effect of dashpots on the underly-
ing bedrock is investigated. The depth of
rigid rock H=4 B is assumed, and the ge-
ometry of a foundation is selected to be
identical with the previous one. The hys-
teretic damping ratio hp=0.05 is used for
a soil to avoid the singularity due to reso-
nance. The horizontal impedance function
and foundation input motion subjected to a
SV wave are demonstrated in Figs.5 and 6,
respectively. These figures show that the
viscous dashpots drastically suppress the
fluctuation due to the existence of the be-
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Fig. 3. Impedance functions of an embedded foundation
(»=0.4, E/B=0.5 half-space, D/B=)
drock and the results almost coincide with a circular foundation. This implies the dis-
those for a half-space. However the fluctua- advantage of the viscous dashpots;i.e. the
tion is clearly recognized in the results for dashpots reduce the effect of bedrock and
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Fig. 4. Foundation input motions of an
embedded foundation
(v=0.4, E/B=0.5, H/B=c, D/[B=o0)

overestimate the radiation damping in the
frequency below the cut-off frequency (a,=
7/8). However in a finite element analysis,
it may turn out to be advantageous since a
bad influence of an artificial bottom boundary
inevitably assumed may be reduced. The

underestimation of a bedrock influence is -

considered due to the excessive wave radia-
tion toward the third direction, and this
fact will be studied later by examining char-
acteristics of wave propagation measured by
the energy transmission. :

Consider the two identical foundations at
a distance of D=3 B/2. The geometry of
foundations is the same as the previous case
and the soil is assumed to be a half-space.
The horizontal and rotational impedances are

Kug !l nul,
5.0 e <
SR 3D \ -
w iR .
3.0 |-
Imaginary part
2.0 |-
1.0 |
0.0 =
_1'0 1 1 1 1 1 ]
0.0 0.5 1.0 15 2.0 2.5 3.0
ap=wB/Vg
Fig. 5. Horizontal impedance function
considering underlying bedrock
(»=0.4, E/B=0.5, H/B=4.0, D|B=
oo, h=0.05) e
1LY
15 [ 2D
==w=== Approx.3-D
-t Axi-sym.
1.0

0.5

0.0 TIIIFIITII7IIIII7
0.0 0.5 1.0 15 2.0 2.5 3.0
=wB/Vg
Fig. 6. Horizontal foundation input motion
considering underlying bedrock
(v=0.4, E/B=0.5, H/B=4.0, D/|B=co,
h=0.05)

demonstrated in Fig.7 and the corresponding
foundation input motions are shown in Fig.
8. The real part of impedance functions in
Fig.7 is larger than that for the single
foundation in Fig.3, while the imaginary
part exhibits an opposite tendency due to
wave reflection at a neighboring foundation.
The influence of an adjacent foundation
depends on the dimension of space. For 2-D
case, the impedance function is affected by
the adjacent foundation much stronger than
that for other cases. This is due to the
absence of radiation toward the third direc-
tion. The approx. 3-D results show that
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(b) Rotational impedance function
Fig. 7. Impedance functions considering
an adjacent foundation (»=0.4, E/B
=0.5, half-space, D/B=2.5)

the effect of structure-soil-structure interac-
tion is underestimated compared with the
3-D case. For the foundation input motion,
it is also observed that the addition of
dashpots makes its result close to the 3-D
one while the fluctuation diminishes. This
is recognized especially in the rotational
mode which tends to be exerted by the ex-
istence of a neighboring foundation. This
is due to the fact that the additional dashpots
excessively absorb radiating waves from the
foundation.

In order to examine the excessive wave
radiation toward the third direction when
viscous dashpots are added, the characteristics
of wave propagation from a line source are

diigics ALY
«=s==- Approx.3-D

s o s 3--1) g

0.0 1 1 ] ] ! 3
0.0 06 10 15 2.0 25 3.0
ap=wB/Vg
(a) Horizontal foundation input motion

IBe|
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04 | ceia 3.D

02 |-

0.1 |-

0.0

0.0 0.5 1.0 15 2.0 2.5 3.0

(b) Rotational foundation input motion
Fig. 8. Foundation input motions consi-
dering an adjacent foundation
(»v=0.4, E/B=0.5, half-space, D/B=
2.5)

discussed by evaluating the rate of energy
transmission. The average flow of energy
over one period through the surface S is
defined by (Pao and Mow, 1973)

E=f‘£%iamz(duﬁj—¢7”u,)d5 (23)

in which » is a unit normal vector and the
upper bar denotes the complex conjugate.
In the above equation, the summation con-
vention is used. The integrand in Eq. (23)
is the actual rate of work done by the surface
traction per unit area averaged over one
period and equal to the flow of energy.
Considering a line source of length L at the
surface, the average of energy flow at the
concentric semi-cylindrical surface of radius
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(c) Three-dimensional case
Fig. 9. Distribution of rate of energy
transmission from horizontal line
source (»=0.4, half-space)

R and length L is expressed as follows :

T (L/2 10 : : i
E=ff - ——ny (04— Gyyu;)drRd0, (24)
0 J-rj2 4 :
in which the displacement and stress are
calculated using the Green’s functions of a
half-space for each dimension (Nakai et al.,
1984 a ; Matsuoka and Yahata, 1980).

Fig:9 shows the dependency of the inte-
grand in Eq. (24) for a horizontal line source
on the nondimensional distance az(=Rw|Vg)
when a,(=Lw/Vs)=1.0. It is found in this
figure that the distribution of the rate of
energy transmission differs among the cases.
The result for 2-D case exhibits less attenua-
tion since the waves propagate only within
a plane. The difference between the results

S-Dashpot

P-Dashpot
(a) Modeling of half-space by soil columns  (b) Modeling of each soil column

Fig. 10. Representation of half-space by
soil columns

for the approx. 3-D and exact 3-D cases is
observed in the far region. This fact shows
that the influence of distant objects such as
a bedrock or adjacent structures becomes
stronger for 2-D case while it diminishes for
approx. 3-D case.

From the discussion described above, it can
be concluded that the viscous dashpots fairly
improve the 2-D results and make them
approach to the 3-D ones especially for a
foundation embedded in a homogeneous half-
space. -However it is also found that the
effect of a bedrock and an adjacent foundation
tends to be suppressed. Hence the approx.
3-D analysis must be used carefully when
evaluating the effect of the layered soil or
the structure-soil-structure interaction.
Although the numerical results are presented
only for the case of the Poisson’s ratio v=
0.4, we have confirmed that the conclusions
demonstrated here do not change for the
other Poisson’s ratio.

SIMPLIFIED METHOD USING SOIL
COLUMNS WITH DASHPOTS

As a result of the examination on the
effect of the viscous dashpots for the soil-
structure interaction, the efficiency of the
dashpots is observed especially in the case of
a foundation embedded in a half-space.
Based on this fact, the method of simplified
soil-structure interaction analysis is presented
here by applying the dashpots to a one-dimen-
sional (1-D) soil column. S
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Soil Column Model of Half-Space
The homogeneous half-space is partitioned

§

W Vs
Vg /ﬂ/

L

: e foldns Lo 14 1 B i
into semi-infinite soil columns cennected to I 13 T I :/le'.,l i TE ;}‘,%n-
ol 5 i H i H HR 7 H 2 Vs 7073
an embedded rigid foundation as shown in j v 3Lr,‘,vs : T . z "
! ey i g
Fig.10. In order to represent the 3-D wave (a) Horizontal () Vertical @ Rotational (@) Torsionsl
vibration vibration vibration vibration

radiation, the viscous dashpots are added to
the surface around the soil column beneath

the foundation and added to the both sides

of the soil columns connected to side walls
of the foundation. The representation of a
soil by soil columns is similar to the model
by Pauw (1953) which presented the static
soil coefficients using the soil column with an
expanding cross section. Gazetas et al.
(1984) also used the soil column to represent
the soil coefficients of piles.

Impedance Function of Surface Foundation
The impedance functions of the soil column
with the dashpots are easily derived from

Fig. 11. Dashpots added to soil columns

shear wave is written as
o 0%u 7 Ou 4 0%u
5922 p 0 ' 012’
in which 7 is the damping coefficient related
to the dashpots. Considering the radiation
condition, the impedance function is obtained
by solving Eq. (25) as follows : -

ou
K= —HVSZA@? -

and By=+—(0/Ve)*+iwy/oVs’,
in which A (=4BD) is the area of the

(25)

='pVS2ABm
(26)

the 1-D equation of motion. Considering
the horizontal mode, the equation for the

foundation, B and D is a half width and a
half depth of the foundation, and the sub-

Table 1. Impedance functions of soil column

Direction Equation of motion ’ Impedance function ,Spring const. ’Damp. coéf. 72(2—-D) 7(3-D)
. 0% 7 du - I Vs oV oV  PVg
Horlzontal(s) V't =i +55r | iweVsay/1- 2 7 re o 2 = e
. w7 dw 0w = % oV, ' pVs eV,
ok BEE ol o B t . 7 ZL g Al e
Vertical(z) | Vi P + oF2 prLA\/l_?aT 2 7A PVLA B B + D
12
V’}_"aaf;"’%?vsz‘”” — BV i |, . PVsV 30V, 30Vs oV,
Retoi v 2 1BV sy 8VL AT i A A4
otational (6,) =la¢v 2, ,a,pVLI”\/l B 1.9 B I, VLI, B B + D
o ot or2
: o%, 7 0g, 0%, s v 30V B4 oV, Dt 3°VsBD(B+D)
Torsional(6,)| Vs? —2f=——t5 ; XL -5 8 L +0V(B3+ D3
ional(6,)| Vs? ot =25+ +3p iwpVsIAf1 o > s Vsh | ZimipnB Wi%ﬂﬁu—)

A=4BD, I,=4B3D/3, I,=4BD(B*+D?)/3

Table2. Spring constants and damping coefficients of soil columns

Direction Bottom Basement z-dir. side wall y-dir. side wall
Kp Cs Kx Cx Ky Cy

x 2p(B+v.D) PVsAp wkE PVLAx wE PVsAy

Y 2p(D+vB) PVgAp wE PVsAx v E PV Ay

z © 2pv(B+D) PViAp rE PVsAx rE PVsAy

0, 2.53 ppBD? eVilg, pEQ12D+vE?)/12 eVslx, 0.63pv BE? oVily,

0y 2.53 v B2D oVl 0.63 v DE? PVilx, | pE(12 B2y E?)/12 eVsly,

i 2p{3BD(B+D)+v(B3+D%)}/3| pVslp, 1.26 ppD’E PViIx, i 1.26 pw B*E oVily,

othare | A7=4BD Ine= s Ax=2DE Iy,=2ED20 Ay=2BE Iy,=2F

Ig,= 4%3’ Ip=Ip.+1Ip, v=Vi/Vs |Ix,= Dfa Ix;=Ig,+1x, Iy,= ey Iy,=Iy,+1Iyy
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Table 3.
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Spring constants and damping coefficients of

embedded square foundation

Direction Spring constants Damping coefficients
Horizontal 2pB{(1+v) +2vE} 4pVgB{B+(1+v)E}
Vertical 4p{vB+E} 4pVgB{vB+2E}

4
Rotational - | #{2 5avBa+4BzE+-'é-an+ 1 26uBE2)} %sB{vB’+(1 +0) ES+4BIE}
A
80VgB3
Torsional 47#{(3+v)33+6. 79 B2E} —333—{B+ (B+v)E}
Horizontal-
Rotational 2mE? 2pVs(1+v)BE?
script z denotes the z-direction. The embedment. This is easily evaluated by

- damping coefficient 3 for the 3-D case is
defined by considering the dashpot for P-wave
propagating toward the z-direction and that
for S-wave propagating toward the y-direc-
tion as shown in Fig.11 (a) :

; n=pV1/B+pVs/D, @7
where V. is the analog wave velocity pro-
posed by Lysmer (1965) and it has proven
useful for understanding a surface foundation
subjected to the vertical loading. The reason
why the analog wave velocity is used instead
of the usual P-wave velocity is to avoid the
tendency that it becomes infinity when Pois-
son’s ratio approaches to 0.5 as discussed by
Gazetas et al. (1984). The Lysmer’s analog
wave velocity is written as

V.=3.4Vs/n(1—v). (28)

The impedance functions for the other
directional modes can be derived from the
similar procedure. The equations of motion
considered for these modes and the resultant
impedance functions are listed in Table 1 in
conjunction with the 2-D case.

Note that 3 for the 3-D case includes an
additional term with that for the 2-D case.
Therefore the spring constants, which are
related to 7, increase while the damping
coefficients remain unchanged. From these
results, it may be understood that only the
real part of the impedance functions is af-
fected by the viscous dashpots in the approx.
3-D analysis. :

Impedance Function of Embedded Foundation
The contribution of the lateral soil must
be taken into account when considering the

applying the impedance functions of the bot-
tom soil column for the 2-D case in Table
1;i.e. replacing B and D with D and E[2
for the z-direction and with B and E[2 for
the y-direction.

The impedance function of an embedded
foundation can be obtained by summing up
the contribution of the bottom and four
lateral soil columns. From the view point
of applying this method to the time domain
analysis, the dynamic impedance functions
are approximated by the spring constants and
damping coefficients, which are independent
of frequency, as presented in Table 1.
These constants are calculated as asymptotic
values when the frequency approaches in-
finity except for a rocking impedance which
has a static value. The value of each soil
column for each direction is exhibited in
Table 2. Also, the resultant constants for
a square embedded foundation, which are
obtained by combining the values in Table 2
considering the foundation configuration, are
listed in Table 3.

In order to examine the validity of the
proposed method, a square foundation em-
bedded with a height E=B[2 and B in a
half-space of Poisson’s ratio 0.4 is studied.
The comparison between the result by the
present method and that by the 3-D boundary
element method is made in Fig.12. It is
seen from this figure that the present method
provides a good approximation of an analyt-
ical one as a whole. However a slight dif-
ference is observed in a high frequency range
especially for the case of E=B, since the
impedance function based on the present
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(d) Horizontal-rotational coupling impedance function

Fig. 12. Impedance functions by simplified technique (»=0.4)

method does not exhibit the frequency de-
pendency. From this point of view, the ap-
plication of this method to evaluate the
impedance functions is efficient in the fre-
quency range below the value Vg/4 B (cor-
responding to @,==x/2). As a slight dif-
ference is recognized in the rotational im-
pedance function, this method is normally
applicable for the system in which transla-
tional modes are dominant.

Foundation Input Motion

Next, the foundation input motions due
to SV waves are presented. Referring to
Eqgs. (18) and (19) considering the direction
of normal vector, the foundation input mo-
tion ug; can be evaluated from the impedance
matrix and the incident and reflected wave

field :

uc=Te W'+K;'-pF) =T

ux” Kx gl
X uYF + Ky ’ pyr s
us” Kp ps'

(29)

where K; is the impedance matrix whose
components are listed in Table 2, and u?
and p¥ are the displacement and excavation
force vectors of the free field. The excava-
tion force vector corresponds to the force
to excavate the soil and are evaluated by
performing the integration of tractions along
the soil-foundation interface. The transfor-
mation matrix T is introduced to consider
the geometry of the rigid foundation. When
a rigid foundation embedded in a half-space
due to a vertically incident SV wave is
selected, only a displacement to z-direction
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5 EIB 0.5 E/B—lov_‘., Ll
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(b) Rotational foundation input motion

Fig. 13. Foundation input motions by
simplified technique (»=0.4)

exists in the incident and reflected wave
field :
uF =U cos(wz/cg), 30)
in which U is the displacement at the free
surface. Denoting the averaged values of
displacements along the bottom and side walls
as uf and the integrated values of tractions
as pF, the non-zero values of the bottom are
written as
ugsF =U cos(EE)
and pp,f=—4pUEBDsin(¢§E),
and those of side walls are
uxs” =uy," =Usin(§E)[EE } (32)
and px,F=2uUD{l—cos(¢E)},
In order to confirm the validity of the

present method, the foundation input mo-
tions of an embedded square foundation in

b an

the cases of E=B/2 and E=B are shown :in
Fig.13 by comparing with the exact 3-D
solutions. Both results ' by . the  proposed
metho‘d\exhlblt a good agreement with -those
by the 3-D analysis especially for the hori-
zontal motion. - ‘However a slight difference
is observed in the frequency range over 4,
=2, Whlch corresponds to f=Vs/4 E, in the
case of E=B: This is due to-the assumption
adopted . when evaluating- Eq. (32) 'which
causes the error in the high frequency range.
From this reason, it is recommended that
the application of the present method is
limited ‘to- the ‘system whose' natural fre-
quency is smaller than the value V/4 E.

The problems including the layered soil “or
the neighboring foundatlon can. also be for-
mulated by the- same approach “However,
it has “been pointed out that the influence of
an undenlymg bedrock’ and an ad]acent foun-
dation tends ‘to. be underestimated in the
approx. D analy51s ‘with dashpots compared
with . the realistic- 3-D _analysis. - - In this
paper, the ‘application of the present method,
therefore;  is limited to & fOUndatron em-
bedded in the half—space

CONCLUSIONS

For the purpose of evaluating effects of
viscous dashpots on the soil-structure interac-
tion, the approximate 3-D boundary element
analysis was conducted and the comparison
among the results of 2-D, approx. 3-D and
exact 3-D analyses was made. Based on the
efficiency of these dashpots, a simplified
method was proposed by applying the dash-
pots to 1-D soil columns and the efficiency
of the proposed method was examined.
From these studies, the following conclusions
are derived.

(1) The Green’s function for the approx.
3-D problem is derived by introducing the
viscous damping coefficient into the 2-D
equation of motion and effects of the dashpots
are examined by using the boundary element
analysis.

(2) By adding dashpots, the equivalent
damping of the approx. 3-D solution is re-
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duced and approaches to that of 3-D one.
Consequently, the approx. 3-D solutions can
produce 3-D effects especially 'for a foundatlon
embedded in a half-space. »

(3)" The influence of an underlying bed-
rock and. an adjacent foundation tends to
be underestimated by adding dashpots. By
examining energy transmission, it is found
that this fact is due to the excessive wave
absorption.

(4) Based on the eﬁic1ency of the dashpots
for a foundation embedded in a half-space,
a simplified technique to evaluate the founda-
tion input motions as well as the impedance
functions is proposed by applying the dashpots
to the soil columns which correspond to the
soil around the foundation.

(5) The proposed method gives a good
approximation to the 3-D solutions in the
case that the natural frequency of a system
is smaller than the values Vg/4 B and Vg/4 E
and in the case that the rotational response
is not so dominant. Since the proposed
analysis is easily carried out even by hand
calculation, this method may give us good
insight for complicated problems.
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