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SOURCE LOCATION DEPENDENCE ON GREEN'S FUNCTIONS AND THE EFFECTS OF THE
ARRANGEMENT OF STRONG MOTION GENERATION AREA ON COMPUTED GROUND MOTIONS

I R I I G S
Yoshihiro TERASHIMA and Nobuo FUKUWA

We examined the method of setting the strong motion generation area (SMGA) based on visualization of the Green's function between the site and

the source from the viewpoint of building response. Long-period ground motions in the Kanto urban area due to the inter-plate earthquake along

the Sagami Trough was used as the subject. We found that the predicted wave which SMGAs were placed in predominant area of response

spectrum and energy spectrum is larger and longer than the conventional prediction, and this predominant area depends on the building period,

damping constant and the target city.
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Fig.1 Source models of the Sagami Trough earthquake
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(b) rake = 50 [deg.]
Fig.3 The Green's function at the epicenter 50 km away from the Shinjuku site
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(b) Marunouchi site
Fig.4 Distribution of the Green's function ( rake = 140 [deg.] ) in the source area
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Fig.5 Distribution of the Green's function ( Maximum value in the case of rake 0 to 170 degree ) in the source area
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Fig.6 Difference between Shinjuku site and other sites
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Fig.7 SMGA arrangements of HERP20162 and this study

Table1 Source parameters for each SMGA
No. 1 2 3 4
Seismic Moment [10'® Nm] 20.9 6.39 51.6 18.7
Rise time [s] 4.34 2.93 5.89 4.18
Slip [m] 9.2 6.2 124 89
Area [km?] 550 250 1010 510
Stress drop [MPa] 29.7 29.7 29.8 29.8
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When we create input ground motions for building design, it is necessary to consider multiple cases for source
parameters such as strong motion generation area (SMGA) arrangement and its area size, and multiple faults. Presently,
it is difficult to cover all the possible cases of faults and source parameters. Therefore, we often considered the safety
side ground motions with the faults and SMGA placement close to the planned site. However, it has been reported that
long-period ground motions do not necessarily directly relate to the distance between the epicenter and the site, and the
ground motions vary with the direction of the source and the depth of the hypocenter.

The purpose of this study is to examine the arrangement of the SMGAs and to study the effect of the arrangement by
visualizing the Green's function between the selected site and the source (hypocenter). This study is conducted by
considering the building response to the seismic event. We conducted numerical simulations of the inter-plate
earthquake along the Sagami Trough that is anticipated to occur in the Tokyo. In this study, we compared the results
of the simulations with various SMGA arrangements. We also examined whether the spatial distribution can be
interpreted based on the propagation path of the seismic waves generated from the source area where the Green's
functions were large.

From visualizing the Green's function on the source area, the source area with large amplitude and long duration is
located along the plain edge from the south to the west from Tokyo. Additionally, it was found that the results of
waveform synthesis in case SMGA is arranged at this location, its amplitude becomes larger and duration becomes
longer than the conventional calculation results. From the above, by visualizing the spatial distribution of the Green's
function and arranging the SMGA to be in the region where these amplitudes are large, it is possible to predict the
ground motions considering the variation in the long-period ground motions with source location. However, according
to the calculated spatial distribution of the Green's function when the building period, damping constant, and site was
changed, the source area that showed a higher Green's function varied. Therefore, it is necessary to visualize the spatial
distribution of the Green's function for the buildings with various vibration characteristics in various city.

The limitation of this study is the results depend on the accuracy of the source model and the underground structure
model and the results do not completely match the actual ground motions. In addition, there is room to study other
source parameters such as the hypocenter (focus), rise time, and seismic moment. However, the present results of this
paper can be used to consider the safety side in the structural design of the buildings.

Until now, we have set SMGAs based on the asperity location analyzed from the seismic intensity distribution of the
past earthquake. However, this study approach which understand the source parameters that is a major influence the
building structure, can be used for the ultimate designing of building and the facilities related to nuclear power that

need to consider the maximum class seismic ground motions.

(2020 4 5 H 9 HIERE 8, 2021 42 1 7 18 HERMUE)
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