
  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

１ はじめに 

大都市の多くは軟弱な地盤に広がっており、その中心部には中高

層建物が林立している。軟弱地盤に建設される建物は、杭基礎で支

持される場合が多く、地盤－杭－建物の動的相互作用が地震時挙動

に与える影響は大きい。従って、杭で支持された隣接建物間の動的

相互作用効果を明らかにする必要がある。 

しかし、従来の隣接建物間動的相互作用についての研究は、直接

基礎を対象とする研究に限られている 1～9）。筆者らも、直接基礎を

対象として、隣接建物の階数、建物間距離、基礎の根入れ深さ、建

物間の埋土の剛性、隣接建物の棟数・規模・隣接方向などが、動的

相互作用特性に与える影響を検討してきた 10)。一方、杭基礎を対象

とした解析的な動的相互作用研究は、単独建物の場合に限られてお

り、杭間隔や本数が群杭効果および基礎入力動に与える影響を検討

した長谷川らの研究 12,13)、パイルド・ラフト基礎を対象とした中井

らの研究 14)、埋め込みを有する杭基礎を対象にした高野らの研究 15)、

日下部らの研究 16,17)、実証的と解析的両面から検討した喜多村らの

研究 18)などがある。 

そこで、本論では、杭で支持された建物を対象に隣接建物間動的

相互作用効果を分析する。ここでは、杭基礎（摩擦杭と支持杭）、

パイルド・ラフト基礎及び根入れを有する杭基礎を対象とし、基本

的な動的相互作用特性である、インピーダンスと基礎入力動に与え

る隣接建物の影響を主として検討する。また、杭の応力への影響に

ついても検討を加える。 

2 解析手法 

本論では，杭基礎で支持された隣接建物間の動的相互作用効果を

検討するために、図 1 に示すように無質量剛基礎 A に隣接して建物

B が存在する問題を考え、基礎 A のインピーダンスや基礎入力動を

算定する。解析法は、既出の論文と同様であり 10,11)、薄層法と有限

要素法を、容積法を用いた動的サブストラクチャー法により結合し

た方法である。薄層法には、線形の内挿関数を利用し、薄層底面境

界にはパラキシャル境界 19)を適用している。グリーン関数としては、

ディスク加振解（加振点と受振点が同一鉛直軸上の場合）と点加振

解を用いている。また、図 1 に示すように、根入れ部は 3 次元アイ

ソパラメトリックソリッド要素でモデル化し、分割数は 15×10×2 を

基本としている。また、建物部と杭は、せん断変形を考慮した梁要

素を用いてモデル化している。 

地盤は、図 2 に示すように、一様地盤と二層地盤の 2 つのケース

を考える。一様地盤の場合は摩擦杭、二層の地盤の場合は支持杭を

想定している。地盤の薄層の分割は、杭内の応力変化と対象振動数

範囲での波長の変化を表現するため、18×1m + 32×1m + 50×2m + 

25×4m とした。 
建物が存在しない無質量剛基礎Aの隣に建物Bが建っている場合

の基礎A―地盤―建物Bの振動数領域での運動方程式は式(1)のよう

に表すことができる。 
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ここに、 
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であり、[K]、[M]、{u}はそれぞれ剛性マトリクス、質量マトリクス

及び変位ベクトルである。上添字 G、S、E は、それぞれ地盤、構

造物、基礎に置換した原地盤を意味する。ただし、原地盤の剛性マ

トリクスは、杭については梁要素で評価し、根入れ部についてソリ

ッド要素で評価する。図１に示すように、全ての自由度を基礎 A の

自由度(下添え字 A)とその以外の自由度(下添え字 O)に分けると、式

(1)を以下のように書くことができる。 
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容積法を用いた動的サブストラクチャー法の考え方を利用して、

式(2)を構築した後、建物の存在しない無質量基礎 A について、基

礎Ａ以外の自由度を消去することにより、無質量剛基礎 A に対する

6 自由度の運動方程式に変換することができる。これにより、基礎

A のインピーダンスは式(3)のように評価することができる。 
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T
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ここに、 
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である。また、[T]は、剛基礎の変位拘束条件を表す座標変換マトリ

クスである。 

基礎入力動は、外力を式(4)で表せることから、これを式(2)に代入

して、基礎 A の応答を評価している。 
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ここに、{uA}G と{uB}G は地震波入射時の自由地盤の変位応答である。 

 

3 インピーダンスと基礎入力動 

3.1 杭基礎 

図 3 に示すように、杭の本数、間隔、直径、長さの等しい 2 つの

建物が長辺方向に隣接する問題を考える。地盤は、図 2 に示すよう

に一様地盤（摩擦杭）と二層地盤（支持杭）を考える。平面形状が

30m×15m の長方形の建物が長手方向に基礎間距離 D=3m で隣接す

る問題を考え、隣接建物の階数として 10 階の場合を想定する。杭

は現場打ち RC 杭を想定し、杭頭は剛なマット基礎に剛接する。解

析に用いたパラメータを表 2 に示す。ただし、基礎 A は無質量、基

礎 B は 2.4t/m2 とし、マット部と地盤とは非接触であるとする。ま

た、入射波は、鉛直下方から S 波が入射すると考える。 

図 4 に基礎 A のインピーダンスを示す。隣接建物の影響は隣接建

物の連成系の 1 次固有振動数（長辺 1.4Hz、短辺 1.2Hz）に現れてお

り、短辺方向に比べ建物が隣接する長辺方向で隣接建物の影響が大

きくなっている。この影響は水平、上下、回転、ねじれ成分ともに

同様に現れており、低振動数域で実部は増加し、虚部は減少してい

る。隣接建物の影響の現れ方は直接基礎の場合 10）と同様であるが、

影響度合いはやや大きくなっている。これは、杭基礎の場合の方が

杭間の地盤を介して力がやりとりされやすいためと考えられる。 

図 1 離散化モデル 

表 1 地盤パラメータ 

地盤① 地盤② 

ρ =1.5t/m3 ρ =1.8t/m3 
VS =150 m/s VS =300 m/s

v =0.45 v =0.45 
h =0.03 h =0.03 

図 2 一様地盤と二層地盤 
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図 3 隣接基礎・建物の断面と平面 

表 2 解析パラメータ 

杭 基礎 上部構造 

本数 5×3 EP=2.1×107kN/m2 2B1=30m 階数=10 
d=1.5m νP=1/6 2C1=15m ρ =1.2t/m2 
S=7.5m ρP=2.4t/m3 ρ =2.4t/m2 f1=2Hz 
L=20m hP=0.03  h=0.03 
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また、支持基盤が存在すると、水平成分は波動の重複反射により振

動数変動が現れ、低振動数域で虚部が減少している。一方、上下・

回転成分は杭端支持の寄与が大きいため、低振動数域で実部が倍増

している。ただし、高振動数域の特性である杭間隔と逸散波の波長

に起因する強い振動数依存性、いわゆる Out-of-phase 現象 20)は、支

持基盤の有無に関わらず生じている。隣接建物の影響については、

水平成分については支持基盤の有無に関わらず同程度に現れてい

るが、上下・回転成分では支持基盤の存在により隣接建物の影響が

小さくなっている。これは支持基盤が、隣接建物のロッキング応答

を抑制するためと考えられる。 

図 5 に基礎 A の基礎入力動を示す。地盤変位が杭の深さ方向で変

化するため、入力損失効果が生じ、水平入力動は振動数と共に減少

し、回転は逆に増加している。隣接建物の影響は、直接基礎 10)の場

合と同様に、隣接建物の連成系の固有振動数近傍で振動数変動を与

えると共に、回転動を励起する形で現れる。支持基盤が存在する場

合には、水平成分については、隣接建物の連成系の 1 次固有振動数

図 5 基礎 A の基礎入力動（杭基礎） 
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図 6 基礎 A と隣接建物の基礎応答の比較(一様地盤)（杭基礎）
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図 4 基礎 A のインピーダンス（杭基礎） 
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図 7 基礎 A のインピーダンス（パイルド・ラフト基礎） 

（c）回転（長辺） （d）水平―回転（長辺） 
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図 8 基礎 A の基礎入力動（パイルド・ラフト基礎） 
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付近の影響が大きくなっているが、回転成分は、支持層の存在によ

りロッキング動が抑えられるため、低振動数部での応答が減少して

いる。 

図 6 に、一様地盤の場合について、基礎 A の基礎入力動と建物 B

の基礎応答を比較して示す。地表面直接基礎 10)の場合と同様に、隣

接建物の基礎応答の影響が地盤を介して伝達している。 

 

3.2 パイルド・ラフト基礎 

パイルド・ラフト基礎の場合の、隣接建物の影響を検討する。こ

こで、杭基礎とパイルド・ラフトとの違いは、マット基礎底面と地

盤との接触の有無による差として解析上取り扱っている。図 3 に示

した杭基礎と同じモデルを用いるが、基礎底面と地盤が密着してい

る点のみが異なる。 

図 7 に一様地盤と二層地盤の場合の、隣接建物の有無によるイン

ピーダンスの変化を示す。図 4 に示した杭基礎の場合の結果と比べ

て、静的ばね定数は、水平成分は約 10%、上下成分、回転成分は約

5%程度増加している。水平インピーダンスは直接基礎 10）に類似し

た特性となっている。これに対して、回転・上下インピーダンスは

杭基礎の結果と類似しているが、ラフト部が表層地盤を拘束するた

め、高振動数域での杭間隔に起因する Out-of-phase 現象が減じられ

ている。隣接建物の影響については、杭基礎の場合と同じように、

隣接建物の連成系の 1 次固有振動数の近傍のみで現れており、実部

が大きく虚部が小さくなっており、高振動数域では、直接基礎の場

合と同様に水平－回転に与える影響が大きくなっている。 

図 8 に対応する基礎入力動を示す。図 5 に示した杭基礎の結果と

比較すると、水平入力動がやや大きいものの、ほぼ一致した結果と

なっており、基礎入力動に関しては、パイルド・ラフトと杭基礎と

は類似の結果を与えると言える。 

 

3.3 根入れを有する杭基礎 

図 9 に示すように、根入れが存在する杭支持の基礎が隣接する場

合を考える。根入れ深さは E=4m とし、建物、杭及び地盤の諸元は

表 1 及び表 2 と同一である。たたし、杭の長さを L=16m とする。隣

接建物の階数は 10 階とし、基礎底面部と地盤とは密着していると

する。 

図 10 に一様地盤と二層地盤の場合の、隣接建物の有無によるイ

ンピーダンスの変化を示す。図 7 に示したパイルド・ラフト基礎の

場合と比べて、水平成分の静的ばね定数が大幅に増加している。こ

れに比べて、回転・上下成分の増加度合いは大きくない。これは杭

部に対する根入れ部側面の寄与度の差が方向成分によって異なる

ためである。振動数に対する変動は、根入れ部の拘束の増大により

抑制されやすくなっている。また、基礎底面から支持層までの距離

が短くなるために固有振動数が増加している。隣接建物の影響につ

いては、根入れの存在によって水平成分での影響度合いが増加して

いる。この傾向は直接基礎の場合と同様である。これに対して、回

転成分、上下成分に及ぼす隣接建物の影響は小さい。これは、杭の

軸剛性が大きいため支持層での影響が相対的に大きく、周辺地盤の

影響が減じられるためと考えられる。 

図 11 に基礎入力動を示す。パイルド・ラフト基礎と同じように、

図 9 根入れを有する杭基礎 
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地盤―建物連成系の固有振動数近傍で影響が大きく、この影響は、

水平成分については、二層地盤のほうが大きい。回転成分は、支持

地盤により拘束されるため、二層地盤のほうが小さい。図 5 に示し

た杭基礎の結果及び図 8 に示したパイルド・ラフト基礎の結果と比

べて、根入れの存在により水平成分が減少し回転成分が増加してい

るが、隣接建物の存在による変動は、パイルド・ラフト基礎の結果

と類似している。 

全体的な傾向として、水平インピーダンスと水平基礎入力動は根

入れを有する直接基礎の結果に良く対応し、回転及び上下インピー

ダンス、回転入力動はパイルド・ラフトの結果に類似していると言

える。 

 

4 杭の応力 

隣接建物の存在が杭の応力に与える影響について、杭の最大曲げ

モーメントおよびせん断力を中心に考察する。地盤は図 2 の二層地

盤を考え、杭基礎（支持杭）、パイルド・ラフト基礎及び根入れを

有する杭基礎の３種類の基礎で支持された 3 階建てと 10 階建ての

建物を考える。基礎の諸元は、それぞれ 3.1 節、3.2 節および 3.3 節

と同様なものとする。隣接する建物の階数は、3、6、10 階建てを想

定し、上部構造の質量は 1.2t/m2、それぞれの基礎固定時の振動数は

6.0Hz、3.2Hz、2.0Hz とする。入力地震動は、鉛直下方から S 波が

入射すると考える。波形は最大加速度を 100Gal に基準化した El 

Centro(NS)波であり、解析振動数範囲は 10Hz までとして周波数応答

解析を行った。杭の平面位置による応力の差を検討するために、図

12 に示すように、杭の位置により A1～A5、B1～B5 と呼称するこ

とにする。 

最初に杭基礎の結果を検討する。図 13～14 は、杭で支持された 3

階建てと 10 階建ての建物の結果を示しており、各図中では単独建

物の場合、長辺方向に 3 階、6 階、10 階の建物が隣接する場合の結

果を比較して示している。 (a)と(b)は各杭の杭頭の最大曲げモーメ

ントと最大せん断力を、(c)～(e)は隣接建物に近い位置の隅杭 A5 と

中心杭 B3 の最大曲げモーメントと最大せん断力の分布を示してい

る。 

(a)および(b)を見ると、単独建物の場合には、杭頭の応力分布は点

対称となっており、中央杭で小さく、隅杭で大きくなっており、そ

の傾向は建物が高いほど顕著である。元来、上部構造の慣性力によ

る杭頭の応力は隅杭で大きく、地盤震動による杭頭の応力は内杭で

大きい 18)特性がある。建物が高くなると、上部構造の応答によるベ

ースシアが増加し、地盤震動による応力に比べ、杭頭慣性力による

応力が支配的になるため、結果として建物高さによって杭応力の分

布が変化することになる。 

隣接建物が存在すると、杭の応力分布は大きく変化し、中央杭よ

りも隅杭でその変動が大きくなる。変化が最も大きいのは、3 階建

物の隣に 10 階建物が存在する場合の B5 杭で、曲げモーメントが約

2 倍、せん断力が約 4 倍になっている。同じ高さの建物が隣接する

場合には、2 つの建物がおじぎをするような逆位相の入力成分があ

るため 10)、隣接側の杭で応力が小さくなり、その反対の杭でやや大

きくなる。一方、異なる建物が隣接する場合には、隣接側の杭で影

響が大きく、低い建物の隣に高い建物が隣接する場合に、低い建物

の隣接側の杭の杭応力が大きく増大する傾向がある。 

図(c)～(f)を見ると、地震時の杭の応力分布は、杭頭に静的荷重を

受ける杭応力と同様に、杭頭で応力が大きく、深くなると速やかに

減少し、二層地盤の境界面で大きくなっている。杭端部では、杭の

位置、建物上部構造の階数および隣接建物の影響はあまりなく、入

力地震動と地盤構造で決まることが分かる。これに対して、杭頭部

では建物階数によってベースシアが増加する影響を直接的に受け

ている。隣接建物の影響については、中央の B3 杭では顕著には見

られないが、隣接建物に近い位置の隅杭 A5 杭では、10m 以浅の応

力分布が大きく変動しており、隣接建物が高いほど、地表に近いほ

ど変動が大きくなっている。 

図 10 基礎 A のインピーダンス（根入れを有する杭基礎） 

（a）水平（長辺） （b）上下 
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（c）回転（長辺） （d）水平―回転（長辺） 
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図 11 基礎 A の基礎入力動（根入れを有する杭基礎） 

（a）水平（長辺） （b）回転（長辺） 
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端部杭は、剛版分布的な応力増加に加え、隣接建物の存在による

応力変動が大きくなる傾向があり、耐震設計上この変動要因をどの

ように考慮すべきか今後の検討課題であると思われる。 

次に、パイルド・ラフト基礎の場合の結果を図 15、図 16 に示す。

図 13、図 14 に示した杭基礎の結果と比較すると、曲げモーメント、

せん断力ともに大きく減少しており、基礎マット底面での地盤への

応力伝達効果が現れている。例えば、10 階建物の B5 杭は単独の場

合の三分の一程度に減少している。隣接建物の影響については、杭

基礎の場合と同様な傾向が現れているが、杭応力が低減した結果隣

接建物の存在による変動はより大きくなっている。 

最後に、根入れが存在する場合の結果を、図 17、図 18 に示す。

先に指摘したように、根入れを有する杭基礎の水平インピーダンス

と水平基礎入力動は根入れ基礎と同様の特徴を持っており、地震時

の杭の応力分布は地表面杭基礎とは異なっている。 

まず、単独基礎の結果をみると、応力分布は地表面杭基礎のよう

な剛版分布ではなく、ほぼ一様分布をしている。これは喜多村ら 18)

の指摘と対応している。また、建物の階数が杭の応力に与える影響

は、地表面杭基礎に比べ小さい。杭の曲げモーメント分布をみると、

杭基礎の場合とは異なり、モーメントの反曲点が不明瞭になってい

る。隣接建物の影響については、根入れが無い場合と比較して、大

きく減少している。これは根入れを有する場合には、隣接建物間の

影響が主として根入れ側面部を介して伝達され、杭への影響が減じ

られるためと推察される。 

なお、本論には、紙面の制約から建物の応答結果を示すことを略

したが、建物の応答性状については、既往の直接基礎の結果 10）と

類似した結果が得られていることを付記する。 

 

5 まとめ 

杭基礎、パイルド・ラフト基礎及び根入れを有する杭基礎につい

て、隣接建物の存在がインピーダンス、基礎入力動、及び杭の最大

応力に与える影響について解析的に検討した。得られた知見を以下

に示す。 

(1)インピーダンス 

① 隣接建物の存在がインピーダンスに与える影響は、直接基礎の

場合と同様に隣接建物の連成系の固有振動数付近での変動と

して現れる。隣接建物の影響が大きく現れるのは水平―回転連

図 13 杭の最大応力分布（3 階建物）（杭基礎） 

（a）杭頭最大曲げモーメント （b）杭頭最大せん断力分布
1 2 3 4 5

0

200

400

600

800

AAAAA

0

200

400

600

800

1 2 3 4 5

|Q| (kN)

BBBBB

単 3 6 10

0
300
600
900

1200
1500

1 2 3 4 5AAAAA

0
300
600
900

1200
1500

1 2 3 4 5BBBBB

|M| (kN m). 単 3 6 10 

0 200 400 600 800
-20

-15

-10

-5

0

|Q| (kN)

単独 
3 階
6 階

10 階

（c）A5 杭の最大曲げモーメン

ト分布 

（d）A5 杭の最大せん断力分布

0 300 600 900 1200 1500
-20

-15

-10

-5

0

|M| (kN m).

（e）B3 杭の最大曲げモーメン

ト分布 
（f）B3 杭の最大せん断力分布

0 300 600 900 1200 1500
-20

-15

-10

-5

0

|M| (kN m).
0 200 400 600 800

-20

-15

-10

-5

0

|Q| (kN)

図 14 杭の最大応力分布（10 階建物）（杭基礎） 
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成成分や水平成分であり、回転成分や上下成分は杭の軸剛性が

大きいため直接基礎に比べて隣接建物の影響が小さくなって

いる。また、隣接している方向の方が直交方向より影響が大き

い。隣接建物の影響は、低振動数域では実部が増加、虚部が減

少する形で現れ、二層地盤の場合には、隣接建物の影響は水平

成分で大きく、回転成分と上下成分では小さい。 

② パイルド・ラフト基礎の結果は、概ね杭基礎と類似しているが、

杭間距離により生じる変動が抑制される。 

③ 根入れを有する杭基礎の場合は、回転成分と上下成分は杭基礎

の特性とほぼ同様の結果を示し、水平成分は根入れ基礎と同様

の結果を示している。 

 

図 15 杭の最大応力分布（3 階建物）（パイルド・ラフト基礎）

（a）杭頭最大曲げモーメント （b）杭頭最大せん断力分布
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図 16 杭の最大応力分布（10 階建物）（パイルド・ラフト基礎）

（a）杭頭最大曲げモーメント （b）杭頭最大せん断力分布
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図 17 杭の最大応力分布（3 階建物）（根入れを有する杭基礎） 図 18 杭の最大応力分布（10 階建物）（根入れを有する杭基礎）
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(2)基礎入力動 

①直接基礎の場合と同様に、隣接建物の影響はインピーダンスよ

りも基礎入力動に強く現れ、水平成分より回転成分で影響が顕

著で、連成系の固有振動数周辺で大きく変動している。 

②二層地盤（支持杭）の場合には、半無限一様地盤（摩擦杭）の

場合と比べて、水平成分は大きくなり、回転成分は小さくなる。 

③パイルド・ラフト基礎の結果は杭基礎とほぼ等しく、根入れを

有する杭基礎の場合は水平成分では根入れ基礎と、回転成分で

は杭基礎と同様の結果を与える。 

 

(3)杭の最大応力 

①中央杭では隣接建物の影響は余りないが、隣接側の杭で隣接建

物の影響を大きく受ける。この影響度合いは曲げモーメントよ

りもせん断力で大きく、杭頭での変化が顕著である。 

②同じ建物が隣接する場合、隣接側の杭で曲げモーメントとせん

断力が共に減少する。異なる建物が隣接する場合には、隣接側

の杭で曲げモーメントとせん断力が共に増加し、この傾向は隣

接建物の規模が大きいほど顕著となっている。 

③隣接建物の影響は、杭基礎とパイルド・ラフト基礎の場合に大

きく、根入れを有する杭基礎の場合は小さい。 

 

以上のように、杭を有する基礎の場合、隣接建物の影響は、隣接

建物の杭～建物間の地盤～杭を介して伝達される。このように、杭

周を介するため、地盤との接触面積が増え、直接基礎の場合に比べ、

隣接建物の影響を受けやすい。ただし、支持杭のように上下・回転

拘束が増大すると、隣接建物の影響が顕著な回転動の影響が減じら

れる。隣接建物の影響が最も顕著に表れるのは、地表面杭基礎の杭

応力であり、特に隣接建物に近接する杭応力は大きく変動する。こ

のため、建物外周部の杭については、一般的な応力集中に加え、隣

接建物の存在などの影響を加味し、十分に余裕を持った設計が必要

であると考えられる。 
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